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Abstract. Randomization techniques play an important role in the pro-
tection of cryptosystems against implementation attacks. This paper
studies the case of elliptic curve cryptography and propose three novel
randomization methods, for the elliptic curve point multiplication, which
do not impact the overall performance.
Our first method, dedicated to elliptic curves over prime fields, combines
the advantages of two previously known solutions: randomized projec-
tive coordinates and randomized isomorphisms. It is a generic point
randomization and can be related to a certain multiplier randomization
technique. Our second method introduces new elliptic curve models that
are valid for all (non-supersingular) elliptic curves over binary fields.
This allows to use randomized elliptic curve isomorphisms, which in turn
allows to randomly compute on elliptic curves with affine coordinates.
Our third method adapts a double ladder attributed to Shamir. We
insist that all our randomization methods share the common feature
to be free: the cost of our randomized implementations is virtually the
same as the cost of the corresponding non-randomized implementations.

Keywords: Randomization, elliptic curve cryptography, implementa-
tion attacks, side-channel analysis, elliptic curve models, point multipli-
cation algorithms.

1 Introduction

The celebrated RSA cryptosystem is the most largely deployed cryptosystem
but things are becoming to change. More and more applications propose to use
the elliptic curve digital signature algorithm (ECDSA) to sign digital documents
or messages.

Elliptic curve cryptography bases its security on the hardness of computing
discrete logarithms. More precisely, the elliptic curve discrete logarithm prob-
lem (ECDLP) consists in recovering the value of multiplier k, given points P and
Q = [k]P on an elliptic curve. There are two main families of elliptic curves used
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in cryptography [1]: elliptic curves over large prime fields and non-supersingular
elliptic curves defined over binary fields.

Although an elliptic curve cryptosystem may be mathematically sound and
meets standard security requirements, it may totally succumb to implementation
attacks. A powerful implementation attack, due to Kocher et al. [16,17], monitors
certain side-channel information (e.g., running time or power consumption) dur-
ing the course of a crypto-algorithm and thereby tries to deduce some sensitive
data. For example, the double-and-add algorithm (Fig. 1-a) —i.e., the additive
analogue of the so-called square-and-multiply algorithm— used for computing
Q = [k]P does not behave regularly. This is even more true for elliptic curves
as the classical formulæ for point doubling and point addition are different. To
thwart simple power analysis (SPA) [17] (i.e., side-channel leakage from a sin-
gle power trace), this algorithm is usually replaced with the ‘double-and-add
always’ algorithm [6] (Fig. 1-b). Throughout this paper, we will use this lat-
ter algorithm to benchmark our randomization methods (as well as NAF based
variants; cf. Appendix A).

Input: P , k = (1, k�−2, . . . , k0)2
Output: Q = [k]P

R0 ← P
for i = �− 2 down to 0 do

R0 ← [2]R0

if (ki = 1) then R0 ← R0 + P
endfor

return R0

(a) Double-and-add algorithm

Input: P , k = (1, k�−2, . . . , k0)2
Output: Q = [k]P

R0 ← P
for i = �− 2 down to 0 do

R0 ← [2]R0

b← ¬ki; Rb ← Rb + P
endfor

return R0

(b) ‘Double-and-add always’ algorithm

Fig. 1. Binary point multiplication algorithms

Resistance against SPA does not imply resistance against the more sophisti-
cated differential power analysis (DPA) [17]. In [6], Coron explains how to mount
a DPA-type attack against the ‘double-and-add always’ algorithm. At step i, this
attack requires to form two sets of points: the first set is comprised of points
Pj such that Γ

(∑�−1
t=i [kt2t−i]Pj

)
= 0 and the second set of points Pj such that

Γ
(∑�−1

t=i [kt2t−i]Pj

)
= 1 where Γ (P ) denotes a Boolean selection function (e.g.,

the value of any specific bit in the binary representation of P ). To avoid this at-
tack, one has to prevent the attacker to form the two sets. This can be achieved
by randomizing point P or multiplier k; or better, as recently exemplified by
Goubin [10], by randomizing both P and k.

In the last four years, several randomization methods have been proposed
(e.g., [6,14]). This paper proposes further randomization methods that all have
in common to be (virtually) free, leading to performances surpassing those of
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prior art. It is organized as follows. In the next section, we deal with elliptic
curves over large prime fields. We propose a generic and free method for point
randomization and compare it with a previous multiplier randomization. In Sec-
tion 3, we introduce new models for elliptic curves over binary fields. Based on
these, we propose free point randomization methods allowing to work in affine
coordinates and so answer a problem left open in [14]. In Section 4, we present
a regular variant of Shamir’s double ladder. Our variant allows to construct a
free multiplier randomization method. Finally, we conclude in Section 5.

2 Point Randomization over Large Prime Fields

This section deals with point randomization techniques for elliptic curves defined
over large prime fields. The case of elliptic curves over binary fields is treated in
Section 3.

Let Fp be a (large) prime field with p > 3. An elliptic curve over Fp is given
by the points (x, y) ∈ Fp × Fp satisfying the Weiertraß equation

E/Fp
: y2 = x3 + ax + b (1)

along with point O at infinity.

2.1 Previous Work

For preventing DPA-type attacks, Coron [6] suggests to represent base-point
P = (x, y) ∈ E \ {O} with an equivalent projective representation as P ∗ =
(r2x, r3y, r) —where r is randomly chosen in F

×
p — and to compute Q∗ :=

[k]P ∗ = (X∗
k , Y ∗

k , Z∗
k) in Jacobian coordinates. The result of the point multi-

plication, Q = [k]P , is then obtained as Q =
(
X∗

k/(Z∗
k)2, Y ∗

k /(Z∗
k)3

)
if Zk �= 0

and Q = O otherwise. The same technique applies if P ∗ is represented with
homogeneous coordinates instead of Jacobian coordinates. We refer the reader
to [6] for detail.

Another efficient means for randomizing base-point P , proposed by Joye
and Tymen [14], consists in working with isomorphic curves. All elliptic curves
defined by the Weiertraß equations

E
(u)
/Fp

: y2 = x3 + u4ax + u6b

with u ∈ F
×
p are isomorphic to the initial elliptic curve given by Eq. (1). So the

evaluation of Q = kP can be carried out by picking a random r ∈ F
×
p , com-

puting Q∗ := kP ∗ = (x∗
k, y∗

k) on E∗ := E(r) where P ∗ = (r2x, r3y) and finally
obtaining Q = (r−2x∗

k, r−3y∗
k). This technique naturally extends to projective

coordinates [14].

If we compare the two methods, depending on the implementation, both have
advantages. For efficiency reasons, point multiplications on elliptic curves over
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large prime fields are done using Jacobian coordinates [5] and curve parameter
a is suggested to be selected as a = −3 [1].

The first method —randomized projective representations— allows to keep
the value of a = −3. The second method —randomized isomorphic elliptic
curves— allows in commonly used point multiplication algorithms to simplify
the addition formulæ by taking the Z-coordinate of base-point P equal to 1. As-
suming that Q = [k]P is computed with the ‘double-and-add always’ algorithm,
the performances of the two methods are summarized in Table 1. The cost of
pre- and post-computations are neglected. The bit-length of k is denoted by |k|2.

Table 1. Number of multiplications (in Fp) for computing Q = [k]P in Jacobian
coordinates on an elliptic curve with parameter a = −3

Method
‘double-and-add NAF-based variants1

always’ (Fig. 1-b) simple HM ([12])

No randomization 19 · |k|2 17 1
2 · |k|2 15 · |k|2

Randomized representations ([6]) 24 · |k|2 20 · |k|2 17 7
9 · |k|2

Randomized EC isomorphisms ([14]) 21 · |k|2 20 1
2 · |k|2 17 2

9 · |k|2

2.2 New Method: 2P ∗

We now present a new randomization method, applicable to most left-to-right
point multiplication algorithms, that combines the advantages of the two afore-
mentioned methods: the value of parameter a and the Z-coordinate of base-point
P are unchanged.

Previously known solutions randomize the input base-point P as P ∗ := Υ (P )
and compute [k]P ∗ where from the value of Q := [k]P is derived. Our idea is
fairly simple yet very efficient. Instead of randomizing P , we randomize [2]P
by choosing the method of randomized projective coordinates for function Υ .
This allows to keep the Z-coordinate of P equal to 1 throughout the point
multiplication algorithm.

Figure 2 depicts a slight modification of the basic ‘double-and-add always’
algorithm (Fig. 1-b) including our randomization method. The NAF based vari-
ants (Appendix A) can be adapted similarly.

If Υ denotes the randomized projective representation method ([6]) then we
need 19 · |k|2 field multiplications for evaluating Q = [k]P with our modified
algorithm of Fig. 2 and 171

2 ·|k|2 (resp. 15·|k|2) with the corresponding adaptation
of the NAF based variants, on an elliptic curve with parameter a = −3. In other
words, as shown in Table 1, these algorithms have the same complexity as their
deterministic (i.e., non-randomized) counterpart. Compared to the state-of-the-
art, this translates into a speedup factor of ≈ 10% for the ‘double-and-add
always’ algorithm and of ≈ 13% for the NAF based variants.
1 The NAF based variants are described in Appendix A.
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Input: P , k = (1, k�−2, . . . , k0)2
Output: Q = [k]P

P ∗ ← Υ (P ) [base-point randomization]
R0 ← [2]P ∗

for i = �− 2 down to 1 do
b← ¬ki; Rb ← Rb + P
R0 ← [2]R0

endfor
b← ¬k0; Rb ← Rb + P

return Υ −1(R0)

Fig. 2. Randomized algorithm 2P ∗

It is also worth noting that our randomization technique is generic in the
sense that it applies to numerous point multiplication algorithms.

2.3 Interpretation

In our case, the randomization of base-point P can nicely be related to random-
ization techniques of multiplier k in the computation of Q = [k]P . This pushes
a step further previous observations made by Okeya and Sakurai in [21].

Let E denote an elliptic curve over Fp with #E points. Instead of computing
Q := [k]P directly, Coron suggests in [6] to pick a short random number r
(typically r is 32-bit integer) and then compute Q in a random way as

k∗ := k + r · #E and Q = [k∗]P .

In order to optimize modular arithmetic, elliptic curves recommended in the
cryptographic standards are defined over a prime field Fp where p is a generalized
Mersenne prime, that is, a prime of the form p = 2�±2m±1 where m is relatively
small. As a result, since from Hasse theorem we have |#E − p − 1| ≤ 2

√
p, it

follows that the binary representation of #E is likely to be a ‘1’ followed by
a long run of ‘0’s. For example, in hexadecimal, the elliptic curve “secp160k1”
from [2, Section 2.4] has

#E = 01 00000000 00000000 0001B8FA 16DFAB9A CA16B6B316

points. The randomized multiplier, k∗, then typically looks as

k∗ := k + r · #E = (r)2‖k�−1 · · · k�−t‖ some bits︸ ︷︷ ︸
:=α

.

Observe that the t most significant bits of multiplier k appear in clear. If [k∗]P
is evaluated with the ‘double-and-add always’ algorithm then, letting k∗ = r 2�+
�k/2�−t�2t + α, we first compute P1 := [r]P , and continue with �k/2�−t�2t + α
as the multiplier.
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Remarking that with the ‘double-and-add always’ algorithm, (true/dummy)
point additions are always performed with point P (not P1), our randomized
algorithm 2P ∗ (Fig. 2) can be seen, in the previous example, as a variation of the
randomized multiplier method where [2]P ∗ plays the role of P1, for the leading
bits of k.

3 Point Randomization over Binary Fields

3.1 Previous Work

The Weierstraß equation for non-supersingular elliptic curves over F2m is given
by

E/F2m : y2 + xy = x3 + ax2 + b (∪{O}) . (2)

The use of randomized projective representations ([6]) for preventing DPA-
type attacks is not restricted to elliptic curves over prime fields and equally apply
to elliptic curves over binary fields.

On the contrary, the method of randomized isomorphisms does not apply for
elliptic curves over binary fields because the x-coordinate of a point is invari-
ant through isomorphism, as noticed in [14]. This is most unfortunate because,
over F2m , affine coordinates lead to better performances [7].2 The next section
explains how to overcome this limitation without performance penalty.

3.2 New Representation

Rather than considering the short Weierstraß equation (Eq. (2)), we consider
elliptic curves given by the extended model

Ê/F2m : y2 + xy + �y = x3 + Ax2 + Bx + C (∪{O}) (3)

with �, A, B, C ∈ F2m . As shown in the next proposition, this model is as general
as the classical Weierstraß model.

Proposition 1. The elliptic curves E and Ê (given by Eq. (2) and Eq. (3),
respectively) are isomorphic over F2m if and only if there exists σ ∈ F2m such
that 





A = a + �

B = �2 + σ

C = b + �2a + �3 + σ2

.

Furthermore, the isomorphism

ϕ : E
∼−→ Ê,

{
O �−→ O

(x, y) �−→ (x + �, y + σ) . (4)

2 In [11], the authors suggest to use projective rather than affine coordinates. This
comes from the ratio of inversion to multiplication. In [11] this ratio is roughly 10 to
1 whereas in [7] it is roughly 3 to 1. For hardware architectures affine coordinates
are more suitable.
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Proof. This is an application of [18, Theorem 2.2]. �
Let P1 = (x1, y1) and P2 = (x2, y2) ∈ Ê \ {O}. The inverse of P1 is −P1 =

(x1, x1 + y1 + �). If P1 �= −P2 then P1 + P2 = (x3, y3) where

x3 = λ2 + λ + A + x1 + x2 and y3 = (x1 + x3)λ + x3 + y1 + �

with λ =

{
y1+y2
x1+x2

if x1 �= x2 ,
x1 + � + y1+�2+B

x1+� otherwise .

Neglecting (field) additions (i.e., xors), the addition formulæ on our ex-
tended model only requires an additional squaring for the computation of �2,
compared to the formulæ in classical Weierstraß model [1, § A.10]. If the value
of �2 is precomputed or if normal bases [9] are used, its cost can be neglected
too.

Consequently, the computation of Q = [k](x, y) can be carried as follows:

1. Randomly choose �, σ ∈ F2m ;
2. Form P ∗ = (x + �, y + σ);
3. Compute Q∗ := [k]P ∗ on Ê;
4. If Q∗ = O output O

else Q = (x∗
k, y∗

k) and output Q = (x∗
k + �, y∗

k + σ).

A better way for eliminating the additional cost due to the computation of �2,
valid in all cases, is to replace the extended model of Eq. (3) by the corresponding
quartic form. This is achieved by replacing (x, y) with (x, y + x2). Doing so, we
obtain an elliptic curve, isomorphic to Eq. (3), given by the equation

ÊQ
/F2m

: y2 + xy + �y = x4 + (A + �)x2 + Bx + C . (5)

The sum of two points P1 = (x1, y1) and P2 = (x2, y2) ∈ ÊQ \ {O} is given
by

x3 = λ2 + λ + A + x1 + x2 and y3 = (x1 + x3)(λ + x1 + x3) + x3 + y1 + �

with λ =

{
x1 + x2 + y1+y2

x1+x2
if x1 �= x2 ,

y1+B
x1+� otherwise .

.

These formulæ only involve 1 squaring, 2 multiplies and 1 inversion to add
or double points, as for the classical Weierstraß model. Neglecting the cost of
(field) additions, the computation of Q = [k](x, y) can thus be evaluated in a
random way and without penalty as:

1. Randomly choose �, σ ∈ F2m ;
2. Form P ∗ = (x + �, y + σ + x2 + �2);
3. Compute Q∗ := [k]P ∗ on ÊQ;
4. If Q∗ = O output O

else Q = (x∗
k, y∗

k) and output Q = (x∗
k + �, y∗

k + σ + (x∗
k)2 + �2).
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4 Multiplier Randomization

A very natural way [4] to randomize multiplier k consists in choosing a random
integer r of the size of k and to compute Q := [k]P as Q = [k − r]P + [r]P .
Another possibility is to write k as k = �k/r�r + (k mod r) for a random r.
Letting S := [r]P , we can obtain Q = [k]P as

Q = [k1]P + [k2]S (6)

where k1 := k mod r and k2 := �k/r�.
The randomized splitting of k is generally disregarded as it appears to double

the running time: two point multiplications have to be computed instead of one.
However, as noted by Shamir (see [8]), if one has to evaluate y := gkhd in a

group G, the intermediate values gk and hd are not needed [25].
The next figure describes a regular variant of Shamir’s double ladder, using

additive notations and where G is the group of points of an elliptic curve. We
let � denote the bit-length of max(k, d) —and thus k�−1 and/or d�−1 are equal
to 1.

Input: P , k = (k�−1, k�−2, . . . , k0)2, S, d = (d�−1, d�−2, . . . , d0)2
Output: Q = [k]P + [d]S

R1 ← P ; R2 ← S; R3 ← P + S; c← 2d�−1 + k�−1; R0 ← Rc

for i = �− 2 down to 0 do
R0 ← [2]R0

b← ¬(ki ∨ di); c← 2di + ki; Rb ← Rb + Rc

endfor

return R0

Fig. 3. Regular variant of Shamir’s double ladder

Applied to the evaluation of Eq. (6), we see that this variant only requires one
point doubling and one point addition per bit, that is, exactly the same cost as
the ‘double-and-add always’ algorithm. The NAF based variants (Appendix A)
can be adapted along the same lines.

5 Conclusion

This paper dealt with randomization techniques for elliptic curve cryptography;
three free novel methods were presented:
– randomized algorithm 2P ∗;
– randomized isomorphisms in affine coordinates;
– randomized algorithm based on Shamir’s ladder.

Furthermore, we gave an original interpretation of certain point randomization
techniques in terms of multiplier randomizations. We also introduced new models
for elliptic curves over binary fields.
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A NAF-Based Regular Point Multiplication Algorithms

The computation of the inverse of a point P = (x, y) on an elliptic curve is
free. So, the m-ary point multiplication algorithms for computing Q = [k]P
can be speeded up by using a signed representation for k. In particular, for
m = 2, a non-adjacent form (NAF) representation —that is, representing k as
k =

∑�
i=0 κi 2i with κi ∈ {−1, 0, 1} and κi ·κi−1 = 0,∀i— gives rise to a speedup

factor of ≈ 11% [19].
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At first glance, NAFs do not seem to help in reducing the complexity of the
‘square-and-multiply always’ algorithm. However, the non-adjacency property,
κi · κi−1 = 0, can be exploited by scanning two digits per iteration. We con-
sider the following three cases and the corresponding operations to be performed
(point doublings and point additions/subtractions are respectively denoted by
D and A and underlined symbols represent dummy operations):

− (κi, κi−1) = (0, 0): D D A D ;
− (κi, κi−1) = (0,±1): D D A D ;
− (κi, κi−1) = (±1, 0): D D A D .

The cases (κi, κi−1) = (±1,±1) and (κi, κi−1) = (±1,∓1) never occur. The
resulting algorithm is depicted on the next figure. Function sign(·) returns the
sign of an integer (i.e., if a ≥ 0 then sign(a) = 0 and sign(a) = 1 if a < 0).

Input: P , k = (1, κ�−1, . . . , κ0)NAF

Output: Q = [k]P

R0 ← P ; i← �− 1
while (i ≥ 1) do

h← |κi|; Rh ← [2]Rh; R0 ← [2]R0

b← ¬|κi + κi−1|; s← ¬ sign(κi + κi−1)
Rs ← −Rs; Rb ← Rb + P ; Rs ← −Rs

h← ¬h; Rh ← [2]Rh

i← i− 2
endwhile
h← |i|; Rh ← [2]Rh

b← h ∨ ¬|κ0|; s← ¬ sign(κ0)
Rs ← −Rs; Rb ← Rb + P ; Rs ← −Rs

return R0

Fig. 4. Simple NAF-based variant of the ‘double-and-add always’ algorithm

This algorithm is highly regular: at each iteration, there are two point dou-
blings followed by a point addition and a point doubling, whatever the values
of scanned digits. The cost per digit is 3

2 point doublings and 1
2 point addition;

this has to be compared to the 1 point doubling and 1 point addition of the
‘double-and-add always’ algorithm. In Jacobian coordinates, a point doubling
costs 8 multiplies when parameter a = −3 and 10 multiplies in the general case
whereas a point addition costs 11 multiplies, provided that the Z-coordinate of
P is set to 1 and 16 multiplies in the general case. Therefore, the algorithm of
Fig. 4 is up to ≈ 8% faster with the same memory requirements (and ≈ 17%
faster with randomized representations; see Table 1).

A more involved algorithm using similar ideas was proposed by Hitchcock
and Montague [12]. It basically corresponds to
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− (κi, κi−1) = (0, 0): D D A ;
− (κi, κi−1) = (0,±1): D D A ;
− (κi) = (±1): D D A .

According to [12], the expected cost per digit is 10
9 point doublings and 5

9 point
addition. The corresponding number of field multiplications for computing [k]P
is listed in Table 1. As presented in [12], a ‘SPA-resistant NAF formatting’
algorithm is needed prior to the computation of Q = [k]P . We give hereafter a
variant that does not require a prior recoding.

Input: P , k = (1, κ�−1, . . . , κ0)NAF

Output: Q = [k]P

R0 ← P ; i = �− 1
while (i ≥ 1) do

h← |κi|; Rh ← [2]Rh; R0 ← [2]R0

b← ¬|κi + κi−1|; s← ¬ sign(κi + κi−1)
Rs ← −Rs; Rb ← Rb + P ; Rs ← −Rs

i← i− 1− ¬h
endwhile
h← |i|; Rh ← [2]Rh

b← h ∨ ¬|κ0|; s← ¬ sign(κ0)
Rs ← −Rs; Rb ← Rb + P ; Rs ← −Rs

return R0

Fig. 5. Modified Hitchcock-Montague algorithm (without recoding algorithm)

There is an important class of elliptic curves, which consists of the so-called
anomalous binary curves (ABC for short) first proposed by Koblitz [15]. An
ABC curve over F2n is given by the Weierstraß equation

E/F2m : y2 + xy = x3 + ax2 + 1 with a ∈ F2 .

Let τ denote the Frobenius endomorphism, τ(x, y) := (x2, y2). In [22,23,
24], methods are proposed to decompose an integer k as k =

∑
i κi τ i with

κi ∈ {−1, 0, 1} and κi · κi−1 = 0, and the double-and-add algorithm is replaced
by a τ -and-add algorithm, where τ application consists in two squarings. This
method is particularly useful when optimal normal bases are used for represent-
ing elements F2m , see [9]. In that case, an adaptation of the simple NAF-based
algorithm (Fig. 4) is more advantageous than the corresponding adaptation of
the Hitchcock-Montague algorithm (Fig. 5) since, neglecting τ applications, the
(expected) cost per digit amounts to 1

2 point addition vs. 5
9 point addition.
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