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Abstract—Privacy-preserving aggregation protocols allow an untrusted
aggregator to evaluate certain statistics over a population of individuals
without learning each individual’s privately owned data. In this note,
we show that a recent protocol for computing an aggregate sum due
to Jung, Li, and Wan (IEEE Transactions on Dependable and Secure
Computing, 2015) is universally breakable, that is, anyone is able to
recover each individual’s private data from the corresponding ciphertext.
We also describe an alternate collusion attack against their companion
product protocol.

Index Terms—Privacy, data aggregation, cryptanalysis.

B ELOW we briefly review the two Jung-Li-Wan privacy-
preserving aggregation protocols. We refer the reader to

the original paper [1] for more details. We show that their
sum protocol can be trivially broken to obtain the plaintext
value from the ciphertext. We also point out a collusion
attack.

1 DESCRIPTION

Suppose that there is a population of n users, denoted by
{1, ..., n}, as well as a designated entity called the aggrega-
tor. In a privacy-preserving aggregation protocol, the goal
of the aggregator is to compute the aggregate value

S =
n∑

i=1

xi [sum protocol]

or

P =
n∏

i=1

xi [product protocol]

in an oblivious way, that is, without having access to the
private data xi in the clear.

The Jung-Li-Wan protocols involve two prime-order
groups, G1 and G2. Specifically, for two large primes p
and q with q | (p − 1), select at random h ∈ (Z/pZ)×
and set g1 = h(p−1)/q mod p, provided that g1 6= 1. Next
set g2 = g1

p mod p2. Groups G1 and G2 are defined as
G1 := 〈g1〉 ⊂ (Z/pZ)× and G2 := 〈g2〉 ⊂ (Z/p2Z)×. It is
readily verified that G1 and G2 are of order q.
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The protocols crucially rely on the simple observation
that for any r1, . . . , rn ∈ Z/qZ, one has

n∑
i=1

(ri+1 − ri−1)ri = 0 (mod q) (1)

where rn+1 := r1 and r0 := rn.

1.1 Product Protocol
The product protocol works in group G1. Each user i, 1 ≤
i ≤ n, chooses a random integer ri ∈ Z/qZ and evaluates

Ri = (g1
ri+1/g1

ri−1)
ri mod p ,

where the quantity g1
ri+1 mod p (resp. g1ri−1 mod p) is re-

ceived from user i+1 (resp. user i−1). Let xi ∈ Z/pZ denote
the private data of user i. User i forms the corresponding
ciphertext Ci as

Ci = xi ·Ri mod p .

Upon collecting all the Ci’s, the aggregator can then
recover the product P :=

∏n
i=1 xi (mod p) as

P =
n∏

i=1

Ci (mod p) .

The correctness of the protocol follows from Eq. (1) by re-
marking that

∏n
i=1 Ri ≡ g1

∑n
i=1(ri+1−ri−1)ri ≡ 1 (mod p).

1.2 Sum Protocol
The sum protocol goes in a similar way but in group G2.
Namely, each user i evaluates

Ri = (g2
ri+1/g2

ri−1)
ri mod p2

for a randomly chosen ri ∈ Z/qZ. This value Ri is used
by user i to get the encryption of her private data xi.
Specifically, the corresponding ciphertext Ci is given by

Ci = (1 + xi p) ·Ri mod p2 . (2)

From all the Ci’s, the aggregator can then obtain the sum
S :=

∑n
i=1 xi (mod p) as

S =
(
∏n

i=1 Ci mod p2)− 1

p
(mod p) .

Again the correctness of the protocol is easy to check.
Indeed, we have

∏n
i=1 Ci ≡

∏n
i=1[(1+xi p)·Ri] ≡

∏n
i=1(1+

xi p)·
∏n

i=1 Ri ≡ (1+
∑n

i=1 xi p)·1 ≡ 1+S p (mod p2) since∏n
i=1 Ri ≡ g2

∑n
i=1(ri+1−ri−1)ri ≡ 1 (mod p2) from Eq. (1).
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2 CRYPTANALYSIS

As recalled in § 1.2, if xi is the private data of user i, its
encryption is given by Ci = (1 + xi p) · Ri mod p2 where
Ri = (g2

ri+1/g2
ri−1)

ri mod p2; cf. Eq. (2).
It is worth noting that Ri is an element of G2. Since the

order q of G2 divides p− 1, it follows that

Ri
p−1 ≡ 1 (mod p2) ,

and consequently,

Ci
p−1 ≡ (1 + xi p)

p−1 ≡ (1− xi p) (mod p2) .

The private data of any user i (i.e., xi) can therefore be
recovered by anyone from the corresponding ciphertext Ci

as

xi =
1− Ci

p−1 mod p2

p
(mod p) .

3 A COLLUSION ATTACK

The previous attack does not apply to the product protocol.
We present an additional collusion attack that works against
both the product protocol and the sum protocol. As we
already showed in the previous section that the sum pro-
tocol is insecure, we describe the attack against the product
protocol.

User i’s randomizer is computed as

Ri = (g1
ri+1/g1

ri−1)ri mod p

where ri is a random integer generated by user i. The
quantities g1ri+1 mod p and g1

ri−1 mod p are received from
users i+ 1 and i− 1 respectively, as part of the protocol.
User i also shares g1

ri mod p with both users i+ 1 and
i− 1. Hence, if users i+ 1 and i− 1 collude, then they can
compute the randomizer of user i as

Ri = (g1
ri)ri+1/(g1

ri)ri−1 mod p .

With knowledge of the randomizer Ri, the colluding
adversaries can then recover the private value xi from the
ciphertext Ci of user i as xi = Ci/Ri mod p.

Collusion attacks were already considered in the original
paper. The authors propose in [1, Sect. 5.6] an advanced
protocol aimed at defending against collusion attacks of
so-called “rushing” adversaries. Their idea is to make the
randomizer of each user i dependent on the random secrets
of a larger number of different users. Specifically, for some
parameter k ≥ 1, they suggest to define the randomizer Ri

of each user i as

Ri = (g1
ri+k+1/g1

ri−1)ri+kri+k−1···ri mod p ,

which is evaluated through k + 1 rounds of exchange
among users —note the basic protocols correspond to the
case k = 0. For example, for k = 1, the suggested coun-
termeasure goes as follows. In the first round, each user
i + 1 respectively receives from users i + 2 and i − 1
the quantities g1

ri+2 mod p and g1
ri−1 mod p, and com-

putes Y ′i+1 = (g1
ri+2/g1

ri−1)ri+1 mod p. Next, in the second
round, each user i receives from user i+1 the quantity Y ′i+1

and computes her randomizer Ri as Ri = Y ′i+1
ri mod p.

This generalized protocol is unfortunately insecure. It is

even less secure than the basic protocols as a single mali-
cious user (as opposed to two in our collusion attack) can
break it. Suppose that user i + 1 maliciously sets Y ′i+1 as
Y ′i+1 = g1

a mod p for some random integer a. From the
knowledge of a and g1

ri mod p, user i + 1 can then easily
recover the randomizer of user i as Ri = (g1

ri)a mod p and
thereby user i’s private value xi as xi = Ci/Ri mod p.
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