
Off-line/On-line Generation of RSA Keys with
Smart Cards

[Published in S.-P. Shieh, Ed., 2nd International Workshop for Asian Public
Key Infrastructures, pp. 153–158, Taipei, Taiwan, Oct. 30 –Nov. 1, 2002.]

Nathalie Feyt, Marc Joye, David Naccache, and Pascal Paillier

Gemplus Card International, France
{nathalie.feyt, marc.joye, david.naccache, pascal.paillier}@gemplus.com

Abstract. Standard bodies and organizations are pushing for increas-
ingly larger RSA keys. Today, RSA keys range from 512 bits to 2048 bits
and some bodies envision 4096-bit RSA keys in the near future.
This paper devises a new methodology for generating RSA keys. Con-
trary to what is usually done, the key generation is divided into two
phases. The first phase is performed off-line, before the input parame-
ters are even known. The second phase is performed on-line by the smart
card once the input parameters are known, and is meant to be very fast.
Compared to the fastest reported method ([4]), our solution —or more
precisely the on-line phase thereof, is conceptually more advanced and
achieves extreme execution speeds as generating 1024-bit or 2048-bit
RSA keys amounts to practical running times lowered by several orders
of magnitude. Moreover, our technique achieves on-line generation of
RSA keys of arbitrary length from a small set of seeds computed during
the off-line phase. Subsequently, in addition to be fast and flexible, our
solution also features attractively low memory requirements.

Keywords. Cryptography, RSA keys, smart cards, PKIs.

1 Introduction

Public-key cryptography faces the problem of the authentication of the public
keys: How can we be sure that a pair of public key/user’s identity are matching.
A related problem is how to distribute public keys trustfully. These issues are
proved to be the bottleneck for a wide deployment of public-key systems, such
as the RSA cryptosystem [8]. It is here the Public Key Infrastructures (PKIs)
come into play [6]. The idea behind PKI is fairly simple. It basically consists in
producing an analogue of a phone directory. In the ’PKI directory’, one should
be able to find a user (or more generally an application) and the corresponding
public key. Of course, this directory must in some sense be certified. To this
purpose, in addition to the name and the public key, the directory also contains
a certificate issued by a Certification Authority (CA). Furthermore, in order to

2 Nathalie Feyt, Marc Joye, David Naccache, and Pascal Paillier

make the system inter-operable, each user belongs to a domain and each domain
has its own associated certification authority. Then, when the user has to be
identified and authenticated, he just produces the certificate issued by the CA
of his domain. This certificate is a digital signature by the CA on at least the
user’s public key and his identity (along with some other credentials, if needed).

At present, when smart cards hold public keys, it is common that a compan-
ion certificate is issued by a CA, for each embedded public key. A certificate has
a cost, even if the corresponding public key is never used by the card holder.
Moreover, the memory which is used to store the keys, generated off-board, has
to be paid even if the end-user never uses the public-key functions.

A cheaper solution may be to have an on-board key generation. So, sets of
keys will be generated only if they will be used. A second advantage is that
there is more memory available. Furthermore, we should note that on-board key
generation is more secure as the private keys are only known by the card holder,
i.e., the end-user. Although attractive, this second solution may be too slow for
certain applications. The on-board generation of a complete 2048-bit RSA key
takes 30 seconds with the very efficient algorithm of [4], on average.

This paper is aimed at presenting a mixed off-board/on-board solution. The
variable and time-consuming part is performed off-line: it produces small seeds
that are used in the second, fast, on-line part of the generation of the keys
themselves. Moreover, it can virtually accommodate any RSA bit-length and
any public exponent. As a result, we obtain a fast, flexible, on-board RSA key
generation algorithm.

The rest of this paper is organized as follows. In the next section, we introduce
the notations and briefly review the RSA cryptosystem. In Section 3, building
on the algorithm of [3], we present our efficient off-line/on-line key generation
algorithm. Finally, we conclude in Section 4.

2 The RSA Cryptosystem

The RSA cryptosystem [8] is a pair of algorithms: a public algorithm (encryp-
tion or signature verification) and a private algorithm (decryption or signature
generation). Its security relies on the difficulty of integer factorization.

Each user chooses two large primes p and q, and publishes the product N =
pq. Next, he chooses a public exponent e that is relatively prime to (p− 1) and
(q − 1). Finally, he computes the secret exponent d according to

ed ≡ 1 (mod lcm(p− 1, q − 1)) . (1)

The public parameters are (N, e) and the secret parameters are (p, q, d).

To send a message m to Bob, Alice looks to Bob’s public key (e,N) and forms
the ciphertext c = µ(m)e mod N , where µ is an appropriate padding function
(e.g., OAEP [1]). Next, to recover the plaintext m, Bob uses his secret decryption
key d to obtain µ(m) = cd mod N and so m.

Off-line/On-line Generation of RSA Keys with Smart Cards 3

This encryption scheme can be converted into a signature scheme. If Bob
wants to sign a message m, he uses his secret key d to compute the signature
s = µ(m)d mod N (a valid choice for µ is PSS [2]). Next, he sends m and s to
Alice. Then Alice can verify that s corresponds to Bob’s signature on message
m by checking whether se ≡ µ(m) (mod N) where e is the public exponent of
Bob.

2.1 General moduli

RSA moduli are not restricted to products of two large primes. It is for example
possible to work with moduli consisting of 3 or more factors. If N =

∏
i≥2 pi

(with pi large primes) denotes an RSA modulus then public exponent e must be
co-prime to λ(N) where λ is the Carmichæl function and secret exponent d is
defined according to ed ≡ 1 (mod λ(N)).

2.2 Chinese remaindering

It is possible to speed up the private operation (i.e., decryption or signature
generation) through Chinese remaindering [7]: the private operation is carried
out modulo each prime factor of modulus N and these partial results are then
recombined. For example, if N = pq, we set dp = d mod (p− 1), dq = d mod
(q − 1) and compute Rp = cdp mod p and Rq = cdq mod q. Next, letting iq =
1/q mod p, we obtain cd mod N as

CRT(Rp, Rq) = Rq + q[iq(Rp −Rq) mod p] . (2)

This mode of operation is referred to as CRT mode and the secret parameters
are (p, q, dp, dq, iq).

3 Generation of RSA Keys

As briefly mentioned in the previous section, the RSA setup requires the values
of public exponent e and of the key length (i.e., the length of modulus N). We
let ` denote the bit-length of N . Then, on input e and ` (determined by the
application), the card must possess two primes p and q so that

(i) (p− 1) and (q − 1) are co-prime to e, and
(ii) N = pq is exactly an `-bit integer.

The obvious solution is to let the card randomly compute on-board values
for p and q from e and `. The drawback in this approach is the running time;
typically, given the state-of-the-art, a 2048-bit RSA key requires 30 seconds. An-
other solution consists in pre-computing values for p and q for various pairs (e, `)
and to store those values in eeprom-like, non volatile memory. The drawback
here is either the cost —eeprom-like memory is expensive— (when there are
lots of chosen pairs (e, `)) or the lack of interoperability (when there are few
chosen pairs (e, `)).

4 Nathalie Feyt, Marc Joye, David Naccache, and Pascal Paillier

In the sequel, we are looking for quick and cheap processes for producing
two primes p and q satisfying Conditions (i) and (ii). To ensure that N = pq
is exactly an `-bit integer, it suffices to choose p ∈ [d2(`−`0)−1/2 e, 2`−`0 − 1

]

and q ∈ [d2`0−1/2 e, 2`0 − 1
]

for some 1 < `0 < `. Indeed, we then have
N ≥ min(p)min(q) ≥ 2`−1 and N ≤ max(p)max(q) < 2`, as required. Con-
sequently, Condition (ii) above reduces to finding primes in a range of the form[d2`0−1/2 e, 2`0 − 1

]
.

3.1 First solution

A very natural yet cumbersome solution consists in precomputing and writing
in the card’s non-volatile memory a set of integer values {σi} such that for
each i, PRNG(σi) yields a prime number. Here, PRNG denotes a pseudo-random
number generator, that is, a deterministic function that expanses fixed-length
integers to bit-streams of desirable length (for instance 1024 bits). Once the
card is personalized with its own set of seeds, it simply computes p = PRNG(σi)
whenever the generation of a prime number is required. Each time, a counter
for i is decremented so that the routine will jump one seed ahead in non-volatile
memory at the next execution.

Clearly, the seeds σi should be as short as possible in order to minimize
the memory space needed to store them all in the card. On the other hand,
these have to be large enough to prevent anyone from being able to guess their
value and anticipate prime numbers the card is meant to generate during its
lifetime (as this would lead to a complete breaking). The on-line phase, i.e., the
sequence of computations carried out by the card when some prime is gener-
ated, is trivially simple (one single invocation of PRNG) and can be extremely
fast. There exist, indeed, numerous ways of basing a pseudo-random generator
on a cryptographically secure hash function or block-cipher that achieve highest
execution throughputs. Unfortunately, the off-line phase necessary to precom-
pute the seeds may be quite long. Indeed, the process of randomly picking some
σ such that PRNG(σ) is prime cannot be much smarter than applying primality
tests on PRNG(σ) for random values of σ. This yields roughly

Prσ [PRNG(σ) prime] ≈ 1
|PRNG| · ln 2

.

Therefore, in the common setting where |PRNG| = 1024, about 709.78 primality
tests are necessary for selecting a single seed, on average. This complexity may
be halved down by forcing PRNG(σ) to be odd for any σ (and we would also have
to take into account the constraint that gcd(p − 1, e) = 1 with respect to the
RSA cryptosystem).

3.2 Second solution

The off-line phase of the previous solution is somewhat time-consuming. This
section investigates how to speed up this phase (at the expense, however, of a
slightly slower on-line phase).

Off-line/On-line Generation of RSA Keys with Smart Cards 5

3.2.1 Granularity An efficient prime generation algorithm has been devised
in [4]. It exploits the elementary property that a prime number has no trivial
factors. Let Π =

∏
pi prime pi be the product of the first small primes. The algo-

rithm of [4] proceeds in two steps. The first step consists in generating a number
relatively prime to Π, say k, and the second step is, given k, the construction of
a prime candidate q satisfying gcd(q, Π) = gcd(k,Π) = 1. If candidate q is not
prime, then k is updated and a new prime candidate is constructed, and so on.
Because candidate q is such that it is already prime to the first primes (namely,
to Π), the probability that it is prime is high and so few iterations have to be
performed until a prime q is found.

Building on [3], we now present an algorithm that works for any given bit-
length `0 for prime q being generated (the generation of p is similar). We assume
that we are given a lower bound B0 for `0: `0 ≥ B0. For example, one can choose
B0 = 256 since a factor smaller than 256 bits is nowadays considered insecure.
We define Π =

∏43
i=1 pi = 2 · 3 · · · 191 < 2256. (More generally, Π is defined as

the largest product of the consecutive first primes so that
∏

i pi < 2B0 .) We also
define the unique integers v and w satisfying

{
b2`0−1/2c ≤ vΠ < b2`0−1/2c+ Π

2`0 −Π < wΠ ≤ 2`0
(3)

namely, v =
⌈
b2`0−1/2c

Π

⌉
and w =

⌊
2`0

Π

⌋
.

Next, given an element k ∈ ZΠ
∗ (that is, k ∈ {0, . . . , Π−1} and gcd(k,Π) =

1), we construct prime candidate q as

q = k + jΠ for some j ∈ [v, w − 1] . (4)

[An efficient way for generating invertible elements in ZΠ
∗ is presented in § 3.2.2;

see Lemma 1.]
As k ∈ ZΠ

∗, it follows that gcd(q,Π) = gcd(k, Π) = 1. Moreover, we have
min(q) = 1 + vΠ ≥ d2`0−1/2e and max(q) = (Π − 1) + (w − 1)Π ≤ 2`0 − 1,
or equivalently, q ∈ [d2`0−1/2e, 2`0 − 1

]
. If the so-obtained q is not prime, we

update k as k ← ak (mod Π) with a ∈ ZΠ
∗. This implies that the updated k

also belongs to ZΠ
∗ since ZΠ

∗ is a group.
The usual way to test the primality (or more exactly, the pseudo-primality)

of a number is the Rabin-Miller test. We refer the reader to [5, Chapter 4] for
details on Rabin-Miller test and variants thereof.

A description of our modified algorithm is depicted in Fig. 1. This algorithm
outputs an `0-bit prime q, for any value for `0.

3.2.2 Storage efficiency A direct application of the previous algorithm
(Fig. 1) requires for each RSA key bit-length the storage of k and j in order
to re-construct q. A first improvement consists in constructing j from a short
random seed, say 64-bit long, used as the input of a mask generating function
(MGF), rather than randomly choosing j as in Step 2 of Fig. 1 (a concrete con-
struction of MGF can be found in [2, Appendix A]). Let σ be a 64-bit random

6 Nathalie Feyt, Marc Joye, David Naccache, and Pascal Paillier

Input: parameters `0, e, and

a (of large order) in ZΠ
∗

Output: a prime q ∈ �d2`0−1/2e, 2`0 − 1
�

1. Compute v =
l
b2`0−1/2c

Π

m
and w =

�
2`0

Π

�
2. Randomly choose j ∈R {v, . . . , w − 1} and set l ← jΠ
3. Randomly choose k ∈R ZΠ

∗

4. Set q ← k + l
5. If (q is not prime) or (gcd(e, q − 1) 6= 1) then

(a) Set k ← ak (mod Π)
(b) Go to Step 4

6. Output q

Fig. 1. RSA Prime Generation Algorithm.

value. Given `0, the values of v and w are computed according to Eq. (3) and j
is defined as MGF1(σ) (mod (w− v)) + v. This simple improvement drastically
reduces the amount of eeprom-like memory ne needed as only the values of σ
and k have to be stored (the value of Π is in code memory).

Further memory can be saved by observing that if k(0) denotes the initial
value of k ∈ ZΠ

∗ then the primes generated by our algorithm have the form

q = af−1k(0) mod Π + jΠ (5)

where f is the number of failures of the test in Step 4 (Fig. 1). The second
observation is that a value k(0) ∈ ZΠ

∗ can be easily computed from a short
random seed using an MGF. We use the following lemma.

Lemma 1 ([3, Proposition 2]). For all b, c ∈ ZΠ s.t. gcd(b, c, Π) = 1, we
have [

c + b(1− cλ(Π))
] ∈ ZΠ

∗

where λ(Π) denotes the Carmichæl function of Π.

As an immediate corollary, if b ∈ ZΠ
∗ so do (Π − b) and consequently

[
c +

b(cλ(Π) − 1)
]

(mod Π). Therefore, given the random seed σ, we can form k(0)

as

k(0) =
[
MGF2(σ) + bMGF3(σ)(MGF2(σ)λ(Π) − 1)

]
(mod Π) (6)

where b is an element of large order in ZΠ
∗ (preferably of order λ(Π)).

The first and second improvements imply that only the value of σ (typically,
a 64-bit value) and the different values of f for desired key lengths need to
be stored in eeprom-like memory. For RSA moduli up to 2048 bits, numerical
experiments show that a upper bound for f is certainly 28 (hence f can be coded
on one byte).

Off-line/On-line Generation of RSA Keys with Smart Cards 7

For example, in order to be able to produce RSA moduli ranging from 512 to
2048 bits with a granularity of 32 bits (they are 49 possible such key lengths), a
card needs to store σ (8 bytes) and values for f for primes p and q (2× 49 = 98
bytes), that is, a total of 106 bytes (848 bits) in eeprom-like memory.

A last trick to reduce the needed memory is to write in code-memory several
values of Π (and the corresponding λ(Π)) for different key lengths by noting
that a larger value for Π leads to smaller values for f .

3.2.3 Interoperability We now consider Condition (i), namely we want that
RSA primes p and q verify the relation gcd(p− 1, e) = gcd(q− 1, e) = 1 where e
denotes the public exponent.

From Eq. (5), we observe that a prime, say q, generated by the algorithm of
Fig. 1 satisfies q = af−1k(0) mod Π + jΠ. Hence, provided that e divides Π, we
have

q ≡ af−1k(0) (mod e) . (7)

Moreover, assuming that e is prime, the condition gcd(e, q − 1) = 1 reduces
to gcd(e, q − 1) 6= e ⇐⇒ q 6≡ 1 (mod e). Consequently, if public exponent e
is a prime dividing Π then the condition gcd(e, q − 1) = 1 is fulfilled whenever
af−1k(0) 6≡ 1 (mod e). A way to achieve this consists in choosing a ≡ 1 (mod e)
(but of large order as an element of ZΠ

∗) and to force k(0) so that k(0) 6≡ 1
(mod e). Hence, the resulting prime q satisfies q ≡ k(0) 6≡ 1 (mod e), as desired.

The card does not know a priori the value of exponent e; the value of e is
determined by the application. However, most applications (i.e., > 95%) use for
e values in the set {3, 17, 216 + 1} (notice that all these values are prime). In
order to cover the largest set of applications, we thus choose parameter a such
that a ≡ 1 (mod {3, 17, 216 + 1}), include 216 + 1 in the factorization of Π, and
force k(0) so that k(0) 6≡ 1 (mod {3, 17, 216 + 1}). A possible candidate for a is
the prime R = 264 − 232 + 1, provided that gcd(Π,R) = 1. The condition on
k(0) can be achieved by Chinese remaindering. More precisely, we need a value
K(0) constructed from random seed σ such that K(0) 6≡ 0, 1 (mod {3, 17, 216 +
1}). Given σ, we first construct two random integers in the respective ranges
[2, 24] and [2, 216], say κ1 = MGF2′(σ) and κ2 = MGF2′′(σ). Next, by Chinese
remaindering (see Eq. (2)) modulo e1 := 17 and e2 := 216 + 1, we compute
κ1,2 = κ2 + e2[i1,2(κ1 − κ2) mod e1] where i1,2 = 1/e2 mod e1. Letting e0 := 3,
we compute κ0,1,2 = κ1,2+e1e2[i12,0(2−κ1,2) mod e0] where i12,0 = 1/(e1e2) mod
e0. (Observe that κ0,1,2 6≡ 0, 1 (mod {3, 17, 216 + 1}).) From σ we construct a
random integer in the range [0, π) with π = Π/(e0e1e2), say κπ = MGF2′′′(σ),
and by Chinese remaindering modulo π and e0e1e2, we finally define K(0) as

K(0) = κ0,1,2 + e0e1e2[i012,π(κπ − κ0,1,2) mod π] (8)

where i012,π = 1/(e0e1e2) mod π.
Consequently, we obtain an invertible element modulo Π, k(0), satisfying the

condition of Eq. (7) for e ∈ {3, 17, 216 + 1} as

k(0) =
[
K(0) + bMGF3(σ)(Kλ(Π)

(0) − 1)
]

(mod Π) .

8 Nathalie Feyt, Marc Joye, David Naccache, and Pascal Paillier

(This has to be compared to Eq. (6).)
It is worthwhile noticing here that for e ∈ {3, 17, 216 + 1} (dividing Π), we

have k(0) ≡ K(0) (mod e) since K(0) 6≡ 0 (mod e) by construction.

3.2.4 Off-line/On-line generation The system assumes the knowledge of
a lower bound B0 on the bit-length of the RSA primes being generated and a
set E of public exponents likely be used in the applications. This determines the
choice of parameter Π (and so of λ(Π)). We also need two invertible elements
modulo Π, a and b. Finally, we assume that we have at disposal a hash function
H and a family of mask generating functions MGFi (one may for example define
MGFi(x) as MGF(x‖i)).

For concreteness, suppose that B0 = 256 and E = {e0, e1, e2} with e0 = 3,
e1 = 17 and e2 = 216 + 1. Then we can take Π = (216 + 1) ·∏41

i=1 pi = (216 + 1) ·
2 · 3 · · · 179 < 2256. We choose a = b = 264 − 232 + 1 := R. Note that ei divides
Π (for i ∈ {0, 1, 2}) and that gcd(R,Π) = 1.

There are three algorithms. The first algorithm constructs constrained units;
the second, off-line algorithm constructs values for the third, on-line algorithm
generating RSA keys.

With the above system parameters, a possible implementation of the first
algorithm is given below. The input is a string σ given by the calling algorithm.

Input: parameter σ
Output: k ∈ ZΠ

∗

1. Compute κ1 ← MGF2′(σ) (mod (e1 − 3)) + 2
2. Compute κ2 ← MGF2′′(σ) (mod (e2 − 3)) + 2
3. Compute κπ ← MGF2′′′(σ) (mod Π/(e0e1e2))
4. Compute K(0) ← CRT(2, κ1, κ2, κπ) as in Eq. (8)
5. Compute t ← MGF3(σ) (mod ordΠ(R))

6. Output K(0) +
�
K(0) + Rt(K

λ(Π)

(0) − 1)
�

(mod Π)

Fig. 2. Generation of k ∈ ZΠ
∗.

For a given bit-length `0, the next off-line algorithm (Fig. 3) produces c values
fz (for z ∈ {1, . . . , c}) which will be used in the on-line generation `0-bit RSA
primes valid with probability 1 when public exponent e lies in E . Parameter σ0

is a random string, proper to each card, and stored in eeprom-like memory. A
typical length for σ0 is 64 bits.

An RSA application takes on input an RSA key-length ` and a public expo-
nent e. If ` can be written as the sum of two available `0, then the next on-line
algorithm (Fig. 4) is called for each of the two bit-lengths, `0, forming the RSA
modulus N = pq, together with public exponent e. If no such decomposition

Off-line/On-line Generation of RSA Keys with Smart Cards 9

Input: parameters `0, σ0, c
Output: fz for z ∈ {1, . . . , c}

1. Compute v ←
l
b2`0−1/2c

Π

m
and w ← �

2`0

Π

�
2. Set z = 1
3. Define σ ← H(σ0, `0, z)
4. Compute j ← MGF1(σ) (mod (w − v)) + v and set l ← jΠ
5. Using the algorithm of Fig. 2, compute k ∈ ZΠ

∗

6. Set fz ← 0 and q ← k + l
7. If (q is not prime) then

(a) Set fz ← fz + 1 and k ← R k (mod Π)
(b) Go to Step 4

8. Output fz

9. If (z < c) then set z ← z + 1 and go to Step 3

Fig. 3. Off-line algorithm.

Input: parameters `0, e and

the list {fz}1≤z≤c, z

Output: a prime q ∈ �d2`0−1/2e, 2`0 − 1
�
s.t.

gcd(q − 1, e) = 1

1. Compute v ←
l
b2`0−1/2c

Π

m
and w ← �

2`0

Π

�
2. Define σ ← H(σ0, `0, z)
3. Compute j ← MGF1(σ) (mod (w − v)) + v and set l ← jΠ
4. Using the algorithm of Fig. 2, compute k ∈ ZΠ

∗

5. Compute k ← Rfz k (mod Π)
6. Set q ← k + l
7. If (gcd(e, q − 1) 6= 1) then

(a) Set z ← z + 1
(b) If (z > c) output ‘‘Error’’; otherwise go to Step 2

8. Output q

Fig. 4. On-line algorithm.

10 Nathalie Feyt, Marc Joye, David Naccache, and Pascal Paillier

exists then the off-line algorithm must be called to generate valid values or an
error message must be output.

For security reasons, we insist that a prime can only be used once for a given
application. When it is used, it must be marked as such (e.g., by removing the
corresponding entry for z, fz).

If the so-obtained prime, say q, does not satisfy the mandatory condition
gcd(q−1, e) = 1 then another value of z is tested. If there are no longer available
values for z then the off-line algorithm must be called to generate valid values
or an error message must be output.

4 Concluding Remarks

This paper presented a mixed off-line/on-line methodology for the generation of
RSA keys, leading to on-board performances several orders of magnitude faster
than state-of-the-art techniques. Two concrete realizations were proposed. The
first solution has a faster on-line phase (at the expense of a slower off-line phase)
and the second solution features a faster off-line phase. Further, these new fast
off-line/on-line key generation algorithms enable “pay as you go” e-payment
functions by reducing the cost of their infrastructure (cost of certificates and
keys in card memory) while keeping the same security level than the one of
classical key generation processes.

References

1. Bellare, M., and Rogaway, P. Optimal asymmetric encryption. In Advances in
Cryptology – EUROCRYPT ’94 (1995), LNCS 950, Springer-Verlag, pp. 92–111.

2. Bellare, M., and Rogaway, P. The exact security of digital signatures - How to
sign with RSA and Rabin. In Advances in Cryptology – EUROCRYPT ’96 (1996),
LNCS 1070, Springer-Verlag, pp. 399–416.

3. Joye, M., and Paillier, P. Constructive methods for the generation of prime
numbers. In 2nd Open NESSIE Workshop (Egham, UK, Sept. 12–13, 2001).

4. Joye, M., Paillier, P., and Vaudenay, S. Efficient generation of prime num-
bers. In Cryptographic Hardware and Embedded Systems – CHES 2000 (2000),
LNCS 1965, Springer-Verlag, pp. 340–354.

5. Menezes, A. J., van Oorschot, P. C., and Vanstone, S. A. Handbook of applied
cryptography. CRC Press, 1997.

6. PKIX. Public Key Infrastructure (X.509) series. Available at URL http://www.ietf.
org/html.charters/pkix-charter.html.

7. Quisquater, J.-J., and Couvreur, C. Fast decipherment algorithm for RSA
public-key cryptosystem. Electronics Letters 18 (1982), 905–907.

8. Rivest, R. L., Shamir, A., and Adleman, L. M. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM 21, 2 (1978),
120–126.

