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1 Introduction

Security requirements for real-life applications still increase. For this pur-
pose, many people develop cryptographic protocols in order to fulfill these
needs.

When someone designs a new protocol, he usually uses cryptographic
tools for which he is confident. The design and the analysis of these tools is
the domain of the mathematician and the cryptographer. In many cases, a
cryptoalgorithm is proved as secure as solving hard problems (e.g., factoring
large composite numbers). No such “proofs” exist for the cryptanalysis of
protocols. By definition, a protocol designer must suspect everything. The
use of strong cryptoalgorithms is not sufficient to guarantee the security
of a protocol. In some situations, a protocol may be completely subverted
without compromising the security of the underpinning cryptoalgorithm.
Such situations are called protocol failures [11].

Protocols are for example designed in order to establish a session key,
to authenticate a transaction, to sign a document, etc. . . This is usually
achieved by exchanging some messages between two or several people. In the
sequel, we will show a failure on the most widely used public-key cryptosys-
tem, the so-called RSA [13]. It may be briefly described as follows. Suppose
that Alice wants to send a message m to Bob. To setup the system, Bob
carefully selects two large primes p and q, computes nB = pq, chooses a en-
cryption key eB relatively prime to φ(nB), and computes the decryption key
dB according to eBdB ≡ 1 (mod φ(nB)). The public key of Bob is the pair
(nB, eB) and his secret key is dB. To send m to Bob, Alice forms the cipher-
text c = meB mod nB and sends it to Bob. Then, Bob recovers the plaintext



by computing m = cdB mod nB with his secret key dB. The security of this
scheme relies on the intractability to factor nB. The aim of a pirate, say
Carol, is to recover m. This can be done as follows. Carol chooses a ran-
dom number k, intercepts c, replaces it by c′ = ckeB mod nB, and sends c′ to
Bob. Now, when Bob deciphers c′, he obtains m′ ≡ (c′)dB ≡ mk (mod nB).
Since m′ is meaningless, Bob discards it. If Carol can get access to this dis-
card, she finds m = m′k−1 mod nB. This failure was first pointed out by
Davida [5]. Avoiding this attack is easy, the users have to really destroy the
discards, or in other words to protect their bins. The lesson of this failure is
that the protocol designer has to pay attention to what is generally accepted
but not explicitly stated.
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Figure 1: Davida’s attack.

The decryption process can be speeded up by the Chinese Remainder
Theorem (CRT). From p and q, Bob computes mp = cdB mod p−1 mod p and
mq = cdB mod q−1 mod q, and finally finds m = CRT(mp,mq) [12]. Suppose
that Carol induces an external constraint on the deciphering device of Bob
(e.g., ionizing or microwave radiation). Assume that the computation of
mp is correctly performed but not computation of mq. So, Bob gets m′ =
CRT(mp, m

′
q) instead of m. If Bob discards m′ and if Carol can get access

to m′, then she finds the secret factor p by computing gcd((m′)eB − c mod
nB, nB). Hence, q = nB/p and Carol can compute the secret decryption key
dB [10, 7].

This second attack is more dangerous because it completely breaks the
system. This shows clearly the importance of checking cryptographic pro-
tocols for faults [3]. Note also that if Bob protects his bin, the attack does
not remain applicable.

The two previous attacks show that it is extremely difficult for a protocol
designer to determine whether his protocol is sound, even for very simple
protocols. Some researchers proposed formal techniques for analyzing the
soundness of protocols, such as the BAN logic [4] or the three systems pre-
sented in [8].

Another approach for the protocol designer is to try to find flaws in his
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Figure 2: Lenstra’s attack.

protocol with all his experience of good and bad practice. In [1], Abadi
and Needham give general rules helping protocol designers to avoid many
of the pitfalls (see also [2]). In this paper, we push their work further, and
show that the protocol designers must also take care about the hardware
and software implementation of the protocol.

2 Cycling attack against faulty hardware

We shall illustrate this attack in the RSA signature context. Imagine that
Alice wants to send a signed message to Bob. For this purpose, she carefully
chooses two large primes p and q, and publishes their product n = pq. She
also chooses a public verification key v according to gcd(v, φ(n)) = 1. The
secret signature key s is computed so that sv ≡ 1 (mod φ(n)). Then, to
sign a message m, Alice computes S = ms mod n, and sends the pair (m,S)
to Bob. To verify that S effectively is the signature of Alice corresponding to
m, Bob checks whether Sv ≡ m (mod n), where v is the public verification
key of Alice.

We shall see that if the hardware is damaged, then a pirate can obtain
some bits of the secret key s. Note that we do not deal with Chinese re-
maindering based implementations, because, as shown before, in this case
one faulty computation modulo p or modulo q gives the secret factors of n.

2.1 Fast exponentiation algorithms

Suppose that you have to compute S = ms mod n. If s =
∑t−1

i=0 si2i is
the binary decomposition of s, then this computation can efficiently be
performed as depicted on Fig. 3. Indeed, if we respectively let z(i) and
y(i) the values of z and y at step i (Lines 5 and 7 of Fig. 3), we have
z(i) = z(i−1)

(
y(i−1)

)si−1
mod n and y(i) = m2i

mod n. So,

S ≡ m

∑t−1

i=0
si2

i

≡
t−1∏

i=0

(
m2i

)si ≡
t∏

i=1

(
y(i−1)

)si−1
(1)
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≡
t∏

i=1

z(i)

z(i−1)
≡ z(t) (mod n).

1. z := 1
2. y := m
3. for i := 1 to t do

4. if (si−1 = 1) then

5. z := z ∗ y mod n
6. fi

7. y := y ∗ y mod n
8. od

9. S := z

Figure 3: Square-and-
multiply method (I).

1. z := 1
2. for i := t− 1 downto 0 do

3. if (si = 1) then

4. z := m ∗ z ∗ z mod n
5. else

6. z := z ∗ z mod n
7. fi

8. od

9. S := z

Figure 4: Square-and-mul-
tiply method (II).

Scanning the bits of exponent s from left to right, we obtain another
efficient algorithm to compute S = ms mod n (see Fig. 4). The drawback
in this algorithm is that it cannot easily be parallelized. Consequently, we
only focus on the first algorithm.

2.2 Our attack

Let s =
∑t−1

i=0 si2i be the secret key to be discovered. We suppose that expo-
nentiations are achieved by the right-to-left square-and-multiply algorithm
(Fig. 3). The attack supposes that the register containing the value of y
has some permanently damaged known bits, always ‘0’ or ‘1’. Let C and I
denote the subsets of correct and incorrect (i.e. damaged) bits of register y,
respectively. So, any value ŷ stored in register y can be written as∗

ŷ =
∑

j∈C
ŷj2j +

∑

j∈I
ŷj2j . (2)

From Eq. (1), the faulty signature corresponding to message m is given
by

Ŝ = Ŝ(m) = Ŝ(ŷ(0)) =
t−1∏

i=0

(
ŷ(i)

)si
mod n. (3)

Let f : C → C be the function that maps the correct bits of ŷ(i) to the
correct bits of ŷ(i+1). Since C is finite, the sequence must eventually cycle.
The length µ of the tail and the length λ of the cycle can efficiently be
computed by the Floyd’s algorithm [9, exercise 6 on p. 7]. This algorithm
is also known as the kangaroos’ method. It has the advantage of minimizing
the storage requirements.

∗We write ŷ instead of y to indicate that the value is corrupted.
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Two kangaroos K1 and K2 cover the sequence generated by f . Kangaroo
K1 progresses in bounds of 1 unit and kangaroo K2 in bounds of 2 units.
Since the sequence cycles, the two kangaroos will meet. If they meet after k
bounds, then ŷ(k) = ŷ(2k). Once k has been found, it suffices to generate ŷ(j)

and ŷ(k+j) for j ≥ 0. Then, µ is the smallest integer j such that ŷ(k+j) = ŷ(j).

Proof. Since ŷ(k) = ŷ(2k), it follows that (2k−k) is a multiple of λ. Moreover
since ŷ(λ+µ) = ŷ(µ), µ is the smallest integer j such that ŷ(k+j) = ŷ(j). ut

The length λ of the cycle is the smallest integer j such that ŷ(k+j) = ŷ(k).
Putting all together, we obtain the Floyd’s algorithm (see Fig. 5).

1. K1 := correct bits of ŷ(1)

2. K2 := correct bits of ŷ(2)

3. k := 1
4. while (K1 6= K2) do

5. K1 := f(K1); K2 := f (f(K2)); k := k + 1
6. od

7. K := K1

8. K1 := correct bits of ŷ(0)

9. K2 := K
10. µ := 0
11. while (K1 6= K2) do

12. K1 := f(K1); K2 := f(K2); µ := µ + 1
13. od

14. K1 := K; K2 := f(K1)
15. λ := 1
16. while (K1 6= K2) do

17. K2 := f(K2); λ := λ + 1
18. od

Figure 5: Kangaroos’ method.

To recover the bits of the secret exponent s, the pirate Carol proceeds
as follows. She first chooses a random message m. Then, by the kangaroos’
method, she computes the tail’s length µ and the cycle’s length λ of the
sequence generated by the ŷ(i). If the sequence does not cycle, she chooses
another message m and reiterates the process. The first bit of s is s0 = 1
since s must be odd. To find the next (µ − 1) bits s1, . . . , sµ−1, Carol asks
to Alice to sign some ŷ(i) and successively evaluates

σ̂j :=
Ŝ(ŷ(µ−1−j))

Ŝ(ŷ(µ−1+λ−j mod λ))
mod n for j = 1, . . . , µ− 1. (4)

If σ̂j ≡ σ̂j−1 (mod n) then sj = 0; otherwise sj = 1.

Proof. Assume that Carol already computed σ̂1, . . . , σ̂k−1 and therefore
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knows s0, s1, . . . , sk−1. Then, she computes

σ̂k ≡ Ŝ(ŷ(µ−1−k))
Ŝ(ŷ(µ−1+λ−k mod λ))

≡
t−1∏

i=0

(
ŷ(µ−1−k+i)

)si

(
ŷ(µ−1+λ−k mod λ+i)

)si
(mod n).

Suppose that i > k. Then letting i = k + 1 + j with j ≥ 0, we have

ŷ(µ−1−k+i) ≡ ŷ(µ+j) (mod n)

and

ŷ(µ−1+λ−k mod λ+i) ≡ ŷ(µ+λ+j+k−k mod λ) ≡ ŷ(µ+j+λ(1+bk/λc))

≡ ŷ(µ+j) (mod n).

So,

σ̂k ≡
k∏

i=0

(
ŷ(µ−1−k+i)

)si

(
ŷ(µ−1+λ−k mod λ+i)

)si
≡ σ̂k−1

(
ŷ(µ−1)

ŷ(µ−1+λ)

)sk

(mod n).

ut
There is no general recipe to find the remaining bits of s. If the length

µ of the tail is short, Carol may choose another random message m to find
the µ first bits of s. The next bits have to be found by exhaustive search.
However, this search can be speeded up by noting that the unknown bits
have to fulfill some algebraic relations. For example, the bits sµ, . . . , st−1

must satisfy the following relations:

(
λ−1∏

i=0

ŷ(µ+i)

)∑t−1

j=µ
sj

≡
∏λ−1

i=0 Ŝ(ŷ(µ+i))
(∏λ−1

i=0 ŷ(µ+i)
)∑µ−1

j=0
sj

(mod n) (5)

and

λ−1∏

i=0

(
ŷ(µ+i)

ŷ(µ+(i+1) mod λ)

)∑
0≤j≤t−1−µ
j mod λ=i

sj+µ

≡ Ŝ(ŷ(0))/ Ŝ(ŷ(1))
∏µ−1

j=0

(
ŷ(j)

ŷ(j+1)

)sj
(mod n). (6)

Proof.

λ−1∏

i=0

Ŝ(ŷ(µ+i)) ≡
λ−1∏

i=0

t−1∏

j=0

(
ŷ(µ+i+j)

)sj ≡
λ−1∏

i=0

t−1∏

j=0

(
ŷ(µ+(i+j) mod λ)

)sj

≡
t−1∏

j=0

[
λ−1∏

i=0

ŷ(µ+(i+j) mod λ)

]sj

≡
t−1∏

j=0

[
λ−1∏

i=0

ŷ(µ+i)

]sj
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≡
(

λ−1∏

i=0

ŷ(µ+i)

)∑t−1

j=0
sj

≡
(

λ−1∏

i=0

ŷ(µ+i)

)∑µ−1

j=0
sj (

λ−1∏

i=0

ŷ(µ+i)

)∑t−1

j=µ
sj

(mod n).

Ŝ(ŷ(0))
Ŝ(ŷ(1))

≡
µ−1∏

j=0

(
ŷ(j)

ŷ(j+1)

)sj t−1∏

j=µ

(
ŷ(j)

ŷ(j+1)

)sj

≡
µ−1∏

j=0

(
ŷ(j)

ŷ(j+1)

)sj t−1−µ∏

j=0

(
ŷ(µ+j mod λ)

ŷ(µ+(j+1) mod λ)

)sj+µ

≡
µ−1∏

j=0

(
ŷ(j)

ŷ(j+1)

)sj λ−1∏

i=0

(
ŷ(µ+i)

ŷ(µ+(i+1) mod λ)

)∑
0≤j≤t−1−µ
j mod λ=i

sj+µ

(mod n).

ut
Note that if λ = 2, then Eq. (6) simplifies to

(
ŷ(µ)

ŷ(µ+1)

)∑
0≤j≤t−1−µ

j even

sj+µ−
∑

0≤j≤t−1−µ
j odd

sj+µ

≡ Ŝ(ŷ(0))/ Ŝ(ŷ(1))
∏µ−1

j=0

(
ŷ(j)

ŷ(j+1)

)sj
(mod n).

(7)
Similar relations can be exhibited if λ is a power of 2.

2.3 Experimental results

The previous attack was implemented in order to check its effectiveness.
For a 512-bit RSA-modulus, we observed that if the number of faulty bits
is smaller than 20, then the length µ of the tail is generally long and all the
bits of the secret exponent s can be recovered. The length λ of the cycle is
also of some importance. The number of required faulty signatures actually
depends on it. To find the µ first bits of s, we need to know µ + λ faulty
signatures (see Eq. (4)).

Remark. Although quite efficient in practice, our attack is not fully opti-
mized. It can be enhanced by searching collisions instead of cycles. This
will be done in a future work.

3 Conclusions

The soundness of protocols can be verified by formal methods and thanks
to the experience of the designer of good and bad practice. However this
is not enough, flaws can be found in a well-designed protocol. Protocols
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must also be carefully implemented. Usually, programmers use some tricks
in order to speed up the computations. In this paper, we illustrate this
topic by showing how some secret information might be recovered if the
right-to-left square-and-multiply algorithm was used to perform modular
exponentiations. This proves once more that security and efficiency are two
natural but conflicting goals in cryptography. Note that our attack does
not apply to the left-to-right square-and-multiply algorithm. Therefore, the
formal definition of correctness for cryptographic protocols must take into
account the implementation (hardware and software).

The second warning of this paper is that the protocols must be faults
resistant, or at least must provide for how to react in the case of faults.
The correctness verification cannot always be achieved by doing calculations
twice as proposed in [3]. Our cycling attack can pass through this test. The
verification must be done by another (proved secure) way. For example, the
Lenstra’s attack (see Fig. 2) can be avoided as follows [14]. We use the same
notations as in Section 1 (Introduction). Bob first chooses a (small) random
number r relatively prime to nB. Then he computes mrp = cdB mod φ(rp) mod
rp and mrq = cdB mod φ(rq) mod rq. If mrp ≡ mrq (mod r), then the com-
putations are assumed correct and m = CRT(mrp mod p, mrq mod q).
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