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Abstract. This paper gives a comprehensive analysis of Montgomery
powering ladder. Initially developed for fast scalar multiplication on el-
liptic curves, we extend the scope of Montgomery ladder to any expo-
nentiation in an abelian group. Computationally, the Montgomery ladder
has the triple advantage of presenting a Lucas chain structure, of being
parallelized, and of sharing a common operand. Furthermore, contrary
to the classical binary algorithms, it behaves very regularly, which makes
it naturally protected against a large variety of implementation attacks.
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1 Introduction

Exponentiation or powering algorithms are of central importance in cryptogra-
phy as they are the basis of (nearly) all public-key cryptosystems. Although nu-
merous exponentiation algorithms have been devised, algorithms for constrained
devices are scarcely restricted to the square-and-multiply algorithm and its right-
to-left counterpart. A less-known algorithm due to Peter Montgomery is also not
much greedy for memory. Developed for fast elliptic curve multiplication, this
algorithm is of full generality and applies to any abelian group. Furthermore, it
presents several useful features not available in the classical binary algorithms.
? Supported in part by the Ministry of Education of the Republic of China under
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This paper is aimed at giving a thorough analysis of Montgomery ladder, con-
sidering both the efficiency and security issues. Among other things, we show
how it reduces the memory requirements for elliptic curve computations or how
it speeds up by a factor of up to 50% the evaluation of full Lucas sequences. For
(modular) exponentiation, we show that Montgomery ladder can be combined
with the common-multiplicand technique, leading to a 33% speed-up factor. The
Montgomery ladder is also prone to parallel implementations; on a bi-processor
device, the running time is divided by two, compared to the non-parallel version.
Last but not least, Montgomery ladder is a prime choice for a secure exponen-
tiation as its high regularity makes it naturally resistant to various side-channel
and fault attacks. A slight variant protected against the M safe-error attack is
presented.

The rest of this paper is organized as follows. The next section presents
the Montgomery ladder in terms of group-theoretic language. In Section 3, we
analyze the efficiency of Montgomery ladder and compare it to the classical
binary ladders. Section 4 analyzes the security of Montgomery ladder towards
implementation attacks. Finally, we conclude in Section 5.

2 Montgomery Ladder

Originally, the so-called Montgomery ladder [16] was proposed as a means to
speed up scalar multiplication in the context of elliptic curves. It has been then
rediscovered several times and applied to different settings.

To ease the discussion, we give hereafter a higher description of the algorithm.
We consider the general problem of computing y = gk in a (multiplicatively writ-
ten) abelian group G, on input g and k. Let

∑t−1
i=0 ki 2i be the binary expansion of

exponent k. The Montgomery ladder relies on the following observation. Defining
Lj =

∑t−1
i=j ki 2i−j and Hj = Lj + 1, we have

Lj = 2Lj+1 + kj = Lj+1 + Hj+1 + kj − 1 = 2Hj+1 + kj − 2

and so we obtain

(Lj ,Hj) =
{

(2Lj+1, Lj+1 + Hj+1) if kj = 0 ,
(Lj+1 + Hj+1, 2Hj+1) if kj = 1 . (1)

Suppose that, at each iteration, a first register, say R0, is used to contain the
value of gLj and that a second register, say R1, is used to contain the value of
gHj . Equation (1) implies that

(gLj , gHj ) =
(
(gLj+1)2, gLj+1 · gHj+1

)
if kj = 0

and
(gLj , gHj ) =

(
gLj+1 · gHj+1 , (gHj+1)2

)
if kj = 1 .
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Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R1 ← g
for j = t− 1 downto 0 do

if (kj = 0) then

R1 ← R0 R1; R0 ← (R0)
2

else [if (kj = 1)]

R0 ← R0 R1; R1 ← (R1)
2

return R0

Fig. 1. Montgomery ladder

Remarking that L0 = k, this leads to an elegant algorithm for evaluating
y = gk: the Montgomery ladder.

For cryptographic applications, the group G may be taken as ZN
∗ (e.g.,

for RSA or Rabin encryption/signature), Fq
∗ (e.g., for DH key exchange), the

elements of a Lucas sequences (e.g., for LUC signature), the points of an elliptic
curve (e.g., for ECDSA signature), . . . Other practical applications include fast
primality tests and factorization algorithms.

3 Efficiency Analysis

The most widely used algorithm for computing gk are the square-and-multiply
algorithm, which processes the bits of exponent k from the left to the right
(Fig. 2 (a)), and its right-to-left counterpart (Fig. 2 (b)). We restrict our atten-
tion to constrained environments and do not consider more sophisticated expo-
nentiation algorithms (see [7] for a survey).

Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R1 ← g
for j = t− 1 downto 0 do

R0 ← (R0)
2

if (kj = 1) then R0 ← R0 R1

return R0

(a) Left-to-right binary algorithm

Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R1 ← g
for j = 0 to t− 1 do

if (kj = 1) then R0 ← R0 R1

R1 ← (R1)
2

return R0

(b) Right-to-left binary algorithm

Fig. 2. Classical binary ladders
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From a computational perspective, the Montgomery ladder (Fig. 1), in its
basic version, appears inferior to the classical binary algorithms as it requires 2t
multiplications instead of 1.5t multiplications, on average. Nevertheless, in some
cases, the Montgomery ladder may reveal itself more efficient by observing that

1. the value R1/R0 is invariant throughout the algorithm (and so equals g);
2. at each iteration, the two multiplications are independent;
3. at each iteration, the two multiplications share a common operand.

3.1 Lucas chains

The key property of Montgomery ladder (Fig. 1) is that the relation R1/R0 =
g (or equivalently, R1 = R0 g) is maintained invariant. This was noticed by
Montgomery [16, 17] and applied to the ECM factorization method for a special
class of elliptic curves.

Input: G, k = (1, kt−2, . . . , k0)2
Output: Y = kG

R0 ← G; R1 ← 2G
for j = t− 2 downto 0 do

if (kj = 0) then

R1 ← R0 +R1; R0 ← 2R0

else [if (kj = 1)]
R0 ← R0 +R1; R1 ← 2R1

return R0

Fig. 3. Montgomery ladder for elliptic curves

Let R0 and R1 ∈ E(K) be two points on an elliptic curve E defined over a
field K. If the difference G := R1 −R0 is known then the x-coordinate of point
Y = kG can be computed from the x-coordinate of R0, the x-coordinate of point
R1 and the x- and y-coordinates of point G [16]. Agnew et al. [2] (see also [13])
later observed (for binary fields K) that the y-coordinate of R0 can easily be
recovered when point G and the x-coordinates of R0 and of R0 + G (= R1)
are known. This was extended to fields K of characteristic p > 3 in [18, 19] (see
also [3, 6, 8] for general Weierstraß elliptic curves).

Because the computations can be carried out with the x-coordinates only, a
lot of multiplications (in field K) are saved, resulting in an algorithm faster than
the classical binary algorithms (Fig. 2). Additionally, fewer memory is required
since the y-coordinates need not to be handled (and thus stored) during the
computation of x(kG). The y-coordinate of kG, y(kG), is computed at the end
of the algorithm from G, x(kG) and x(kG + G).

A similar technique exists for Lucas sequences. The special Lucas sequence
{Vk(P, 1)} with parameter Q = 1 is considered in [27] and the general case,
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{Vk(P, Q)} along with the ‘sister’ sequence {Uk(P, Q)} is addressed in [9] (see
also [1, Section A.2.4]).

Input: P, Q, k = (kt−1, . . . , k0)2
Output: y = Vk(P, Q)

V0 ← 2; V1 ← P; q0 ← 1; q1 ← 1
for j = t− 1 downto 0 do

q0 ← q0 q1

if (kj = 0) then

q1 ← q0

V1 ← V0 V1 − P q0; V0 ← V0
2 − 2q0

else [if (kj = 1)]
q1 ← Q q0

V0 ← V0 V1 − P q0; V1 ← V1
2 − 2q1

return V0

Fig. 4. Montgomery ladder for Lucas sequences

Analogously to elliptic curves, given (V1, U1) = (P, 1), Vk and Vk+1, the value
of Uk can be recovered as Uk = (2Vk+1 − P Vk)/∆ with ∆ = P 2 − 4Q. Provided
that division by ∆ is inexpensive or that the value of ∆−1 is precomputed,
this saves one multiplication per iteration compared to [9], resulting in a 22%
improvement in the general case and a 50% improvement when Q = 1.

3.2 Parallel computing

A second property of Montgomery ladder is its intrinsic disposition of being
parallelized. This feature may reveal very useful in the near future as recent
cryptographic tokens come equipped with several arithmetical co-processors [6,
Section 5].

To exhibit the parallel nature of Montgomery ladder, we simplify the pre-
sentation of Fig. 1. Using kj and its negation ¬kj as register indexes, the two
different cases can be rewritten into a single statement as

R¬kj ← R0 R1;Rkj ← (Rkj )
2

.

Hence, we clearly see that the two multiplications can be evaluated indepen-
dently.

For a modular exponentiation, if we denote by M the time for performing a
multiplication, an optimized squaring takes roughly 0.8M . So, on a bi-processor
device, each iteration is performed in time M . As a result, the parallel version of
the Montgomery ladder nearly attains the optimal 200% speed-up factor, over
the standard Montgomery ladder (Fig. 1), for an RSA-type implementation. For
elliptic curve implementations, the addition of two points or the doubling are
further dissimilar [8], so that the expected gain seems sub-optimal; it is however
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Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R1 ← g
for j = t− 1 downto 0 do

/* Processor 1 */ /* Processor 2 */

R¬kj ← R0 R1 Rkj ← (Rkj )
2

return R0

Fig. 5. Parallel Montgomery ladder

possible to combine the operations of addition and doubling to lower the number
of (field) multiplications [6] to nearly obtain the 200% speed-up factor.

3.3 Common-multiplicand multiplication

A third property of Montgomery ladder is that the two multiplications share a
common operand: both multiplications involve R0 when kj = 0 and R1 when
kj = 1. The ‘common-multiplicand multiplication’ method [26] is thus appli-
cable. The method was initially developed to speed up the right-to-left binary
algorithm (Fig. 2 (b)). Generalizations and improvements can be found in [22,
23].

The basic idea consists in rewriting the two involved multiplications with
logical operators. Defining Rcom = (R0 AND R1) and Ri,c = (Ri XOR Rcom), we
have

Ri = Ri,c + Rcom , i ∈ {0, 1} . (2)

Assume kj = 1 (the case kj = 0 is similar). Then the Montgomery ladder
requires the computation of R0 ← R0 R1 and R1 ← R1 R1. From Eq. (2), this
can be evaluated as R0 ← R0,c R1 + Rcom R1 and R1 ← R1,c R1 + Rcom R1. On
average, the Hamming weight (i.e., the number of nonzero bits) of Rcom and
Ri,c is twice smaller to that of Ri [27]. Consequently, each multiplication now
requires half less binary additions, on average, that is, a 33% expected gain since
the common multiplication Rcom R1 is only evaluated once.

For a modular exponentiation, the common-multiplicand method is partic-
ularly suited in certain hardware realizations (when logical operations can be
processed in parallel with arithmetical operations). When the group law is more
involved (as on elliptic curves), it may lead to software optimizations as well as
several common (basic) operations (e.g., a field multiplication) may be saved [15].

4 Security Analysis

This section analyzes the security of Montgomery ladder towards implementa-
tion attacks. We distinguish two types of implementation attacks: side-channel
attacks and fault attacks.
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4.1 Side-channel attacks

Side-channel attacks are based on the observation that some side-channel infor-
mation (e.g., timing [12] or power consumption [11]) depends on the instruction
being executed and/or the data being handled.

The standard binary ladders (Fig. 2) contains conditional branchings. If the
conditional branching is driven by secret data (namely, if the bits of exponent k in
the computation of y = gk are secret) and if the two branches behave differently
regarding some side-channel analysis (e.g., simple power analysis (SPA)) then
secret data can be retrieved. To this end, dummy operations are added to the
basic algorithms, so that they behave more regularly [4].

Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R2 ← g
for j = t− 1 downto 0 do

b ← ¬kj

R0 ← (R0)
2; Rb ← Rb R2

return R0

(a) Left-to-right binary algorithm

Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R2 ← g
for j = 0 to t− 1 do

b ← ¬kj

Rb ← R0 R2; R2 ← (R2)
2

return R0

(b) Right-to-left binary algorithm

Fig. 6. (Simple) side-channel protected classical binary ladders

As it clearly appears in the next figure, the Montgomery ladder is already
highly regular. Whatever the processed bit, there is always a multiplication fol-
lowed by a squaring.

Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R1 ← g
for j = t− 1 downto 0 do

R¬kj ← R0 R1; Rkj ← (Rkj )
2

return R0

Fig. 7. (Simple) side-channel protected montgomery ladder

Provided that the writing in registers R0 and R1 (resp. that the squaring of
registers R0 and R1) cannot be distinguished from a single side-channel mea-
surement, the Montgomery ladder can be implemented to prevent a given [sim-
ple] side-channel attack. It is worth noting that protections against simple side-
channel attacks do not ward off the differential attacks, consisting in acquiring
several side-channel measurements of different executions of the same algorithm
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and after that in performing some statistical treatment. For example, the attack
of [4, § 3.2] conducted against the protected standard binary ladders (Fig. 6) read-
ily applies the above protected Montgomery ladder. However, standard blinding
techniques (e.g., [14, 4]) easily prevent differential attacks.

Memory-wise, compared to the protected standard binary ladders, the pro-
tected Montgomery ladder requires one less register. Furthermore, it enjoys the
useful features mentioned in Section 3.

Remark 1. The Montgomery ladder for Lucas sequences (see Fig. 4) does not
behave regularly. This is however not a issue for cryptographic applications as
known cryptosystems based on Lucas sequences ([20, 21]) use for parameter Q
the value Q = 1. Variables q0 and q1 are therefore useless.

4.2 Fault attacks

An important lesson taught in [25] is that countermeasures must be considered
globally (see also [10]). This was illustrated with the C safe-error attack in [25]
and with the M safe-error in [24]. The next paragraphs analyze the security of the
Montgomery ladder regarding to the C and M safe-error attacks and highlight
the interplay between different countermeasures.

Security against C safe-error attack It was well known that a countermea-
sure developed against one implementation attack does not necessarily thwart
another kind of implementation attack automatically. More surprisingly, in [25],
it was pointed out that a countermeasure developed against a given attack, if
not carefully examined, may benefit another physical attack tremendously. In
that paper, a new type of computational safe-error attack (called a C safe-error
attack) was mounted against the classical, side-channel protected exponentia-
tion algorithms of Fig. 6. The C safe-error attack is developed by inducing any
temporary random computational fault(s) inside the ALU.

It is easy to see that the protected algorithm of Fig. 6 (a) (commonly known
as the square-and-multiply-always exponentiation algorithm) is susceptible to a
C safe-error attack. This follows by observing that since the algorithm runs in
constant time, an attacker can more easily locate the exact moment of the second
multiplication “Rb ← Rb R2” for each iteration. Moreover, when the current
exponent bit, say kj , is equal to 0, then this multiplication is a dummy operation
and so has no influence on the final result. Therefore, if an attacker induces any
kind of computational fault into the ALU during the operation of Rb ← Rb R2

at jth iteration, then according to whether the final result is incorrect or not,
she may deduce if kj = 1 or kj = 0. We note however that this attack only reveal
one bit of exponent k and may be made, in some circumstances, much harder
by randomizing exponent k prior to the exponentiation.

The same attack holds for the right-to-left protected algorithm of Fig. 6 (b).
For the Montgomery ladder (Fig. 7), the situation is different as there are no

dummy operations. Consequently, any fault induced into the ALU will result in
an incorrect exponentiation result.
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Security against M safe-error attack The M safe-error pointed out in [24]
can be illustrated on the modular multiplication, B ← A ·B mod N , by calling
the program routine listed in Fig. 8 as B ← MUL(A,B, N). In this routine, it is as-
sumed that multiplier B is represented in a 2T -ary form as B =

∑m−1
j=0 Bj (2T )j ,

and both multiplicand A and multiplier B are sent to the routine MUL by passing
their location address (i.e., the call by address technique). This call by address
assumption is reasonable since it is popular for both high-level programming
language (e.g., C) and all instruction-level language implementations.

Input: X, Y, N
Output: R = MUL(X, Y, N)

R ← 0
for j = m− 1 downto 0 do

R ← (R · 2T + X · Yj) mod N

output R

Fig. 8. M safe-error on interleaved modular multiplication

The idea behind the M safe-error can be understood as follows. The value of
multiplier B will be correct after the assignment operation B ← A · B mod N ,
even if some blocks Bj (or Yj with the notations of Fig. 8) of the multiplier are
modified after they have been employed in the modular multiplication algorithm.
As suggested in [24], this M safe-error can be avoided if B is assigned as the
multiplicand, i.e., by calling the routine as B ← MUL(B, A,N). It should be
noted that the M safe-error attack needs to induce a temporary memory fault
inside a register or memory location. Compared to the C safe-error attack, this
implies stronger cryptanalytic assumptions, namely a higher controllability of
fault location and timing.

As presented in Fig. 7, the Montgomery ladder for modular exponentiation
is vulnerable to the M safe-error attack, no matter R0 or R1 is passed to the
routine as the multiplier in the multiplication R¬kj ← R0 R1. To prove above
claim, we consider the two following possible implementations. Suppose first
that R1 is assigned as the multiplier (that is, exactly the algorithm of Fig. 7):
[R¬kj ← R0 R1; Rkj ← (Rkj )

2]. Within this design, when kj = 1, the two
operations at iteration j are R0 ← R0 R1 and R1 ← (R1)2. Any error induced
into R1 cannot be an M safe-error. On the other hand, when kj = 0, the two
operations are R1 ← R0 R1 and R0 ← (R0)2. An error carefully induced into the
higher part of R1 is an M safe-error (because the error in register R1 is cleared
after the assignment R1 ← R0 R1) and so do not influence the computation.
Based on the two distinct behaviors, an attacker can recover the value of bit
kj . Likewise, if R0 is now assigned as the multiplier, depending on whether of
an error carefully induced into R0 at iteration j is an M safe-error or not, an
attacker can recover the value of bit kj .
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As mentioned in § 3.2, the Montgomery ladder can be implemented in parallel
when two ALU’s are available. It can be easily verified that the above M safe-
error attack still applies in this parallelized implementation if these two ALU’s
share the source information of R0 and R1.

It is fairly easy to modify Montgomery ladder in order to counteract the
aforementioned M safe-error attack. It suffices to perform R¬kj ← R¬kj Rkj at
each iteration instead of R¬kj

← R0 R1 or R¬kj
← R1 R0.

Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R1 ← g
for j = t− 1 downto 0 do

b ← ¬kj

Rb ← Rb Rkj; Rkj ← (Rkj )
2

return R0

Fig. 9. (Simple) side-channel and M safe-error protected montgomery ladder

When kj = 0 (and b = 1), R1 ← R1 R0 is executed (by calling the routine
R1 ← MUL(R1, R0) with R0 as multiplier). On the other hand, when kj = 1 (and
b = 0), R0 ← R0 R1 is executed (by calling the routine R0 ← MUL(R0, R1) with
R1 as multiplier). It can be verified that no matter kj = 0 or kj = 1, any error
induced into R0 or R1 cannot be an M safe-error. The proposed modification
foils thus the above M safe-error attack.

5 Conclusion

This paper gave a generic description of Montgomery ladder in an abelian
group G. It thoroughly analyzed its main features for fast computation and
secure implementation on constrained devices. We hope having convinced the
reader that Montgomery ladder may be a first-class substitute of the celebrated
square-and-multiply algorithm.
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