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Abstract. At CRYPTO 2003, Rubin and Silverberg introduced the con-
cept of torus-based cryptography over a finite field. We extend their set-
ting to the ring of integers modulo N . We so obtain compact representa-
tions for cryptographic systems that base their security on the discrete
logarithm problem and the factoring problem. This results in smaller key
sizes and substantial savings in memory and bandwidth. But unlike the
case of finite fields, analogous trace-based compression methods cannot
be adapted to accommodate our extended setting when the underlying
systems require more than a mere exponentiation. As an application, we
present an improved, torus-based implementation of the ACJT group
signature scheme.
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1 Introduction

Groups where the discrete logarithm problem is assumed to be intractable are
central in the design of public-key cryptography. This was first pointed out by
Diffie and Hellman in their seminal paper [7]. The security of the Diffie-Hellman
key-distribution system relies on the intractability of the discrete logarithm prob-
lem in the multiplicative group of finite fields. Such groups also allow one to
construct encryption schemes, digital signature schemes, and many other cryp-
tographic primitives and protocols [19].

Several improvements were proposed to improve the efficiency of the so-
obtained schemes. In [24], Schnorr suggests to work in a prime-order subgroup
of F×p rather than in the whole group F×p . Building on [26], Lenstra [15] extends

this idea to the cyclotomic subgroup of F×pr . He states that the underlying field
is really Fpr and not some intermediate subfield thereof. More recently, Rubin
and Silverberg [21] (see also [22, 23]) rephrased cyclotomic subgroups in terms
of algebraic tori over Fp. They also proposed the CEILIDH cryptosystem. The
main advantage of their approach resides in the compact representation of the



elements. Previous prominent proposals featuring a compact representation in-
clude LUC [26] and XTR [16]. Several speedups and simplifications for XTR are
described in [28]. Optimizations for CEILIDH and a comparison with XTR can
be found in [11].

Variants of Diffie-Hellman key-distribution system in the multiplicative group
Z×N where N is the product of two primes are proposed in [17, 25]. The goal is
to combine the security of the original scheme with the difficulty of factoring
large numbers. In [17], McCurley argues that it may be desirable to design
cryptographic systems with the property that breaking them requires to solve
two different computational problems.

In this paper, we introduce torus-based cryptography over the ring ZN . It
finds applications in settings similar to those considered by McCurley. It also
reveals useful to increase the performance of cryptographic schemes whose secu-
rity requires both the integer factorization assumption and the discrete logarithm
assumption, or related assumptions (e.g., [3, 2, 10]). Substantial savings both in
memory and in transmission are achieved without security loss. The represen-
tation used in [27] offers the same savings as one-dimensional tori over ZN .
Unfortunately, its usage is mostly restricted to exponentiation: [27] presents an
analogue of RSA. Numerous applications however require full use of multipli-
cation. Tori over ZN embed a group structure and therefore suit a much wider
range of applications. We consider this as the main feature of torus-based cryp-
tography.

As an illustration, we consider the ACJT group signature scheme [1], used in
the design of the protocol standardized by the Trusted Computing Group [29] to
protect privacy of the device’s user. Group signature schemes, as introduced by
Chaum and van Heyst [5], allow a group member to sign anonymously on behalf
of the group. However, the group manager is able to recover the signer’s identity.
The ACJT scheme makes use of arithmetic modulo N , where N = pq is a strong
RSA modulus. Each group member possesses a membership certificate [A, e]
satisfying Ae = ax a0 (mod N) where {a, a0, N} are common public parameters
and x denotes the member’s private key. As the group manager may know the
factorization of N , the secrecy of private key x is only guaranteed modulo p and
q. As remarked in [4], if we wish to disallow the group manager to frame group
members, the length of modulus N should typically be doubled. Based on current
understanding, a torus-based implementation offers the same security level but
without requiring to increase the length of N . For example, for an expected 80-
bit security level, the size of the resulting signatures is about 11 kb (this is half
the amount of the original scheme) and the generation of a signature is more
than three times faster.

The rest of this paper is organized as follows. In the next section, we provide
some background on algebraic tori. We present a compact representation of
one-dimensional tori from the geometric interpretation of the group law on Pell
conics. We also mention compact representations for higher-dimensional tori. In
Section 3, we extend torus-based representations over rings. The main focus is



put on the ring ZN where N is an RSA modulus. We compare the so-obtained
representations with Lucas-based representations and explain why the latter are
not appropriate. Section 4 addresses applications of our torus-based compression.
We present a detailed implementation of the ACJT group signature scheme using
a torus-based representation and discuss the performance of the resulting scheme.
Finally, we conclude in Section 5.

2 Torus-Based Cryptography

Let Fq denote the finite field with q = pr elements. The order of the multiplicative
group F×pr = Fpr \ {0} is pr − 1. Note that pr − 1 =

∏
d|r Φd(p) where Φd(x)

represents the r-th cyclotomic polynomial. We let Gp,r ⊆ F×pr denote the cyclic
subgroup of order Φr(p).

In [21], Rubin and Silverberg identify Gp,r with the Fp-points of an algebraic
torus Tr(Fp). Namely, they consider

Tr(Fp) = {α ∈ F×pr | NFpr/F (α) = 1 whenever Fp ⊆ F ( Fpr} ,

that is, the elements of F×pr whose norm is one down to every intermediate sub-
field F . The key observation is that Tr(Fp) forms a group whose elements can be
represented with only ϕ(r) elements of Fp, where ϕ denotes Euler’s totient func-
tion. The compression factor is thus of r/ϕ(r) over the field representation [21,
9].

2.1 Parametrization of T2(Fp)

We detail a compact representation of Tr(Fp) for the case r = 2. We have
|F×p2 | = p2 − 1, Φ2(p) = p + 1, and Gp,2 = {α ∈ F×p2 | α

Φ2(p) = 1}. We assume

p odd and write Fp2 = Fp(
√
∆) for some non-square ∆ ∈ F×p . We have Gp,2 =

{x+ y
√
∆ | x, y ∈ Fp and (x+ y

√
∆)p+1 = 1}. Since (x+ y

√
∆)p = x− y

√
∆, it

follows that (x+ y
√
∆)p+1 = (x− y

√
∆)(x+ y

√
∆) = x2 −∆y2.

So, the group Gp,2 can be seen as the set of Fp points on the genus 0 curve
C over Fp given by the Pell equation

C/Fp : x2 −∆y2 = 1 . (1)

We have Gp,2 ∼= T2(Fp) ∼= C(Fp) [21, Lemma 7] (see also [18, Theorem 4.5]). If we
denote by ⊕ the group law on C(Fp), given two points (x1, y1), (x2, y2) ∈ C(Fp),
we have

(x1, y1)⊕ (x2, y2) = (x1x2 +∆y1y2, x1y2 + x2y1) .

The neutral element is O = (1, 0) and the inverse of (x, y) is (x,−y).

As remarked in [6, Chapter 3], the geometric interpretation of the group
law on C(Fp) gives rise to a compact representation. Let P = (x1, y1) and



Q = (x2, y2) be two points of C(Fp). The group law on C(Fp) is given by the so-
called ‘chord-and-tangent’ rule [20] (see also [14, § 1] for a detailed account). We
denote by `P ,Q the line passing through P and Q; `P ,Q represents the tangent
line at P if P = Q. The parallel line, say `′, to `P ,Q that passes through
O = (1, 0) intersects (counting multiplicity) the Pell conic C at precisely one
other point (x3, y3), which is defined as P ⊕Q. If m denotes the slope of `P ,Q
then the equation of `′ is given by y = m(x − 1). Therefore, (x3, y3) satisfies
x3

2 − ∆y3
2 = 1 and y3 = m(x3 − 1). We get x3

2 − ∆m2(x3 − 1)2 = 1 ⇐⇒
(x3 − 1)

(
x3(1−∆m2) +∆m2 + 1

)
= 0. From y3 = m(x3 − 1), we find

(x3, y3) =

(
∆m2 + 1

∆m2 − 1
,

2m

∆m2 − 1

)
=

(
(∆m)2 +∆

(∆m)2 −∆
,

2(∆m)

(∆m)2 −∆

)
.

Let now P = (x, y) be a point in C(Fp) \ {O}. Since P = P + O, we have
a map

ψ : Fp → C(Fp) \ {O}, m̄ 7→ P =

(
m̄2 +∆

m̄2 −∆
,

2m̄

m̄2 −∆

)
(2)

where m̄ = ∆m and m is the slope of the line `P ,O passing through P and O.1

Note that m̄2 −∆ 6= 0 for all m̄ ∈ Fp since ∆ is a non-square in Fp.

Proposition 1. The set of solutions satisfying Eq. (1) is given by{
ψ(m̄) | m̄ ∈ Fp

}
∪ {O} .

Proof. It is easy to see that ψ is injective. Indeed, assuming ψ(m̄1) = ψ(m̄2), we
get {

(m̄2
1 +∆)(m̄2

2 −∆) = (m̄2
2 +∆)(m̄2

1 −∆)

2m̄1(m̄2
2 −∆) = 2m̄2(m̄2

1 −∆)

=⇒

{
m̄2

1 = m̄2
2

2m̄1(m̄2
2 −∆) = 2m̄2(m̄2

1 −∆)

=⇒ m̄1 = m̄2 .

This concludes the proof by noting that there are (p+1) solutions to Eq. (1). ut

The inverse map is given by

ψ−1 : C(Fp) \ {O} → Fp, (x, y) 7→ m̄ =
∆y

x− 1
. (3)

By augmenting Fp with ∞, maps ψ and ψ−1 yield an isomorphism C(Fp)
∼→

Fp ∪ {∞} by defining ψ(∞) = O and ψ−1(O) =∞.
We use this latter representation and define

T2(Fp) =
{
m̄ | m̄ = ψ−1(x, y) with (x, y) ∈ C(Fp)

}
. (4)

1 We consider m̄ rather than m to get slightly faster arithmetic. This corresponds to
the map presented in [21, § 5.2].



The neutral element in T2(Fp) is ∞. The inverse of m̄ is −m̄. Let m̄1, m̄2 ∈
T2(Fp) \ {∞} and write ⊗ for the group law in T2(Fp). If m̄1 = −m̄2 then
m̄1 ⊗ m̄2 =∞. If m̄1 6= −m̄2, we get

m̄1 ⊗ m̄2 = ψ−1
(
ψ(m1)⊕ ψ(m2)

)
=
m̄1m̄2 +∆

m̄1 + m̄2
. (5)

As a result, we can do cryptography in T2(Fp) by doing all arithmetic directly
in Fp.

2.2 Trace-based compression

The trace map is defined by

Tr : Fp2 → Fp : α 7→ Tr(α) = α+ αp .

Then α ∈ Gp,2 and its conjugate αp are the roots of polynomial (X − α)(X −
αp) = X2 − Tr(α)X + 1. Define Vk = Tr(αk). Since Vk = αk + α−k, it is
easily verified that Vi+j = ViVj − Vi−j . In particular, we get V2i = Vi

2 − 2 and
V2i+1 = Vi+1Vi − Tr(α). Therefore, if ` is the binary length of k, Tr(αk) can
be quickly evaluated with only ` multiplications and ` squarings in Fp using the
Montgomery ladder (e.g., see [13, Fig. 4]). As we see, trace-based representations
are well suited for exponentiation.

Note that letting P = Tr(α), Vk = Vk(P, 1) corresponds to the kth item of
Lucas sequence {Vk(P,Q)} with parameter Q = 1. Moreover, since α ∈ Gp,2, it
follows that α 6= αp and ∆ := Tr(α)2−4 = P 2−4 is a non-square. Let {Uk(P, 1)}
denote the companion Lucas sequence where Uk ∈ Fp satisfies Vk+Uk

√
∆ = 2αk.

Noting that
√
∆ = α−α−1, we have Uk = (αk −α−k)/(α−α−1). We also have

Vk
2 − ∆Uk

2 = (Vk + Uk
√
∆)(Vk − Uk

√
∆) = (2αk)(2α−k) = 4. Consequently,

an element α = x+ y
√
∆ ∈ Gp,2 can be equivalently written as α = V1

2 + U1

2

√
∆

and αk = Vk
2 + Uk

2

√
∆ such that

(
Vk
2

)2 −∆ (Uk2 )2 = 1. In other words, we have

C(Fp) =
{(

Vk
2 ,

Uk
2

)
| 0 ≤ k ≤ p

}
.

Enhanced trace-based representation. Trace-based representations over Fp
can be ‘enhanced’ to allow the multiplication of two compressed elements. For
y ∈ Fp, we define the parity bit of y as par(y) = y mod 2. As prime p is odd,
we obviously have par(−y) = 1 − par(y) if y ∈ Fp \ {0}. Hence, a point P =
(x, y) ∈ C(Fp) is uniquely identified by the pair (x, β) where β = par(y). We call
this the enhanced trace-based representation. Hence, being given (x1, β1) and
(x2, β2) (corresponding to P1 and P2 ∈ C(Fp)), the compressed value (x3, β3)
(corresponding to P3 = P1 ⊕ P2) can be obtained as follows: evaluate square
roots

√
(x12 − 1)/∆ and

√
(x22 − 1)/∆ over Fp; recover P1 = (x1, y1) and P2 =

(x2, y2) from β1 and β2; compute (x3, y3) = (x1, y1)⊕(x2, y2); and output (x3, β3)
with β3 = y3 mod 2. Compared to torus-based representation, this is however
at the expense of the computation of two square roots and of further memory
requirements.



2.3 Parametrization of higher dimensional tori

The next cases for which the ratio r/ϕ(r) is large (and thus leading to optimal
compression factors) are r = 6 and r = 30. An explicit compact representation
of T6(Fp) is detailed in [21, Section 5.1]. For the case r = 30, we refer the reader
to [8, Section 5].

3 Compact Representations over the Ring ZN

Let N = pq be the product of two large primes. We let ZN denote the ring of
integers modulo N . The isomorphism ZN ∼= Fp × Fq induces an isomorphism
between Tr(ZN ) and Tr(Fp)× Tr(Fq).

Current knowledge in cryptanalytic techniques implies that the hardness of
factoring an RSA modulus N or computing discrete logarithms in a finite field
of the size of N is broadly the same. Assuming that p and q are of equal size,
the discrete logarithm problem in Tr(Fp) and in Tr(Fq) will thus not be easier
than factoring N provided that r ≥ 2 [12]. For efficiency reasons, a smaller value
for r yields better performance. Henceforth, we focus on Tr(ZN ) with r = 2.

3.1 Tori T2(ZN) and T̃2(ZN)

Consider the Pell equation over ZN ,

C/ZN : x2 −∆y2 = 1 ,

where ∆ ∈ Z×N is a non-square modulo p and modulo q. By Chinese remainder-
ing, the set of points (x, y) ∈ ZN × ZN satisfying this equation form a group,
C(ZN ) = C(Fp) × C(Fq), under the ‘chord-and-tangent’ law (see § 2.1). The
neutral element is O = (1, 0). For each point P ∈ C(ZN ), there exists a unique
pair of points Pp ∈ C(Fp) and Pq ∈ C(Fq) such that P mod p = Pp and
P mod q = Pq. We denote this equivalence by P = [Pp,Pq].

We can now extend the previous compression map (cf. Eq. (3)) to ZN . The
only complication is that they are some points of the form [Pp,Oq] or [Op,Pq].
To deal more easily with these points, we consider a projective representation for
the compressed result. We write m̄ as a pair (M : Z) and say that m̄ = (M : Z)
is equivalent to m̄′ = (M ′ : Z ′) if there exists some t ∈ Z×N such that M ′ = tM
and Z ′ = t Z. So we define

ψ−1 : C(ZN )→ P1(ZN ), (x, y) 7→ m̄ = (∆y : x− 1) . (6)

This in turn leads to the definition of T2(ZN ),

T2(ZN ) =
{
m̄ | m̄ = ψ−1(x, y) with (x, y) ∈ C(ZN )

}
. (7)



Group law. We note ⊗ the group law on T2(ZN ). The neutral element is
(t : 0) for some t ∈ Z×N . The inverse of an element m̄ = (M : Z) is (−M : Z).
From Eq. (5), given m̄1 = (M1 : Z1) and m̄2 = (M2 : Z2) in T2(ZN ), a simple
calculation shows that

(M1 : Z1)⊗ (M2 : Z2) = (M1M2 +∆Z1Z2 : M1Z2 +M2Z1) . (8)

Observe that the group law is complete: it works for all inputs m̄1, m̄2 ∈
T2(ZN ).

Affine parametrization. The map given by Eq. (6) does not yield a compact
representation for T2(ZN ) since each element m̄ then requires two elements of
ZN . A possible workaround is to ignore input points of the form [Pp,Oq] or

[Op,Pq] and to restrict to subset C̃(ZN ) = {(x, y) ∈ C(ZN ) | x−1 ∈ Z×N}∪{O}.
A point P = (x, y) ∈ C̃(ZN ) corresponds to m̄ =

(
∆y
x−1 : 1

)
if P 6= O, and

m̄ = (1 : 0) otherwise. We define

T̃2(ZN ) =
{
m̄ | m̄ = ψ−1(x, y) with (x, y) ∈ C̃(ZN )

}
. (9)

From the above observation, an element m̄ in T̃2(ZN ) can be represented by
an element of ZN plus one bit:

(
∆y
x−1 , 1

)
or (1, 0). Yet another possibility is to

represent m̄ as an element of A1(ZN ) ∪ {∞}. Namely, if P = (x, y) ∈ C̃(ZN )
then m̄ = ∆y

x−1 if P 6= O, and m̄ =∞ otherwise. In both cases, we get a compact

representation for T̃2(ZN ).

The group T2(ZN ) consists of all the elements of T̃2(ZN ) together with a num-
ber of elements of the form (M : Z) with gcd(Z,N) = p or q (corresponding to

points [Pp,Oq] and [Op,Pq] in C(ZN )). The ‘chord-and-tangent’ law on C̃(ZN ),
whenever it is defined, coincides with the group law on C(ZN ) = C(Fp)×C(Fq).
The same holds for T̃2(ZN ). In practice, for cryptographic applications, N is the
product of two large primes. It is therefore extremely unlikely that operation ⊗
is not defined on T̃2(ZN ).

3.2 Torus-based vs. trace-based compression

Similarly to § 2.2, Lucas sequences can be defined over the ring ZN by Chinese
remaindering. Trace-based or equivalently Lucas-based compressions are well
suited to exponentiation. For example, Smith and Lennon proposed in [27] an
analogue to RSA using Lucas sequence {Vk(P, 1)} over ZN .

When more than a mere exponentiation is required, trace-based represen-
tations are not applicable. Indeed, let P1 = (x1, y1),P2 = (x2, y2) ∈ C(ZN ).
Computing P3 = P1 ⊕ P2 being given P1 and P2 is easy: we have P3 =
(x1x2 + ∆y1y2, x1y2 + x2y1). However, computing x3 = x1x2 + ∆y1y2 being
only given x1 and x2 is not possible.

Even an enhanced trace-based representation (cf. § 2.2) does not seem helpful
when working over ZN . Here is an example of such an enhanced compression for



Blum integers N (i.e., N = pq with primes p, q ≡ 3 (mod 4)). As before, for
y ∈ ZN , we define par(y) = y mod 2. We also define chr(y) = 0 if

(
y
N

)
= 1 and

chr(y) = 1 otherwise, where
(
y
N

)
denotes the Jacobi symbol of y modulo N .

Since p, q ≡ 3 (mod 4), we have
(−1
p

)
=
(−1
q

)
= −1. It is therefore easily verified

that a point P = (x, y) ∈ C(ZN ) is uniquely identified by the tuple (x, β, χ)
where β = par(y) and χ = chr(y), that is, with one element of ZN and two bits.
Unfortunately, decompressing (x, β, χ) into P = (x, y) requires the knowledge of
p and q, which are, in most settings, private values. Unlike the finite field case, we
do not know enhanced trace-based representation over ZN allowing to multiply
compressed elements. Only torus-based representation over ZN is available in
this case to get a compact representation.

3.3 Extensions and generalizations

Because the problems of computing discrete logarithms and of factoring were
assumed to be balanced for an RSA modulus N = pq, we focused on the case
T2(ZN ). But the same methodology extends to higher-dimensional tori. It also
generalizes to more general moduli; for example, to RSA moduli made of three
prime factors. This allows for different trade-offs between the two computational
problems.

4 Applications

Our compression technique reduces the parameter size (typically by a factor of
two). This in turn reduces the requirements for storage and transmission. It saves
a significant amount in applications where many group elements are evaluated.

As an example, we consider the ACJT group signature scheme. We pointed
out in the introduction (see also [4]) that the group manager in the original
scheme may know the factors of RSA modulus N = pq and so can frame group
members if the computation of discrete logarithms modulo the factors of N is
feasible. As will be apparent, a torus-based implementation allows one to keep
the security of the original ACJT scheme even when the group manager is not
entirely trustworthy — without increasing the length of RSA modulus N .

To simplify the presentation, we omit the various security lengths (λ1, λ2, γ1,
γ2) and corresponding ranges (Λ, Γ ). We refer the reader to [1] for details. Slight
modifications need to be brought. The original ACJT group signature scheme
makes use of a strong RSA modulus, that is, N = pq with p = 2p′ + 1 and
q = 2q′ + 1 for primes p′, q′. Since Gp,2 (resp. Gq,2) has order p+ 1 (resp. q+ 1),
we choose an RSA modulus N = pq with p = 4p′ − 1 and q = 4q′ − 1 for primes
p′, q′; note that doing so −1 is a non-square modulo p and modulo q (i.e., p, q ≡ 3
(mod 4)), which yields faster arithmetic. We let T2 denote the subgroup of order

p′q′ in T2(ZN ). Finally, we let T̃2 = T2 ∩ T̃2(ZN ).



Being a group signature scheme, our modified scheme consists of five algo-
rithms. We use the notation of [1].

Setup Select two random primes p′, q′ such that p = 4p′ − 1 and q = 4q′ − 1
are prime. Set the modulus N = pq. Choose random elements a, a0, g, h in
T̃2. Choose a random element x ∈ Z×p′q′ and set y = gx ∈ T̃2.
The group public key is Y = (N, a, a0, y, g, h). The corresponding secret key
(known only to the group manager) is S = (p′, q′, x).

Join Each user Ui interactively constructs with the group manager a member-
ship certificate [Ai, ei] satisfying Ai

ei = axi ⊗ a0 in T̃2 for some prime ei.
Parameter xi is the private key of Ui (and is unknown to the group manager).

Sign Generate a random value w and compute in T̃2

T1 = Ai ⊗ yw, T2 = gw, T3 = gei ⊗ hw .

Randomly choose values r1, r2, r3, r4 and compute
1. d1 = T1

r1⊗(ar2⊗yr3)−1, d2 = T2
r1⊗(gr3)−1, d3 = gr4 and d4 = gr1⊗hr4

(all in T̃2);
2. c = H(Y‖T1‖T2‖T3‖d1‖d2‖d3‖d4‖m) where m is the message being

signed;
3. s1 = r1−c(ei−2γ1), s2 = r2−c(xi−2λ1), s3 = r3−ceiw and s4 = r4−cw

(all in Z).
The signature on message m is σ = (c, s1, s2, s3, s4, T1, T2, T3).

Verify Compute in T̃2

d′1 = a0
c ⊗ T1s1−c2

γ1 ⊗ (as2−c2
λ1 ⊗ ys3)−1, d′2 = T2

s1−c2γ1 ⊗ (gs3)−1,

d′3 = T2
c ⊗ gs4 , d′4 = T3

c ⊗ gs1−c2
γ1 ⊗ hs4 .

Accept the signature if and only if c′ := H(Y‖T1‖T2‖T3‖d′1‖d′2‖d′3‖d′4‖m) is
equal to c (and if the signature components belong to appropriate ranges).

Open Check the signature’s validity. The group manager then recovers Ai =
T1 ⊗ (T2

x)−1 (in T̃2).

We now discuss the performance of our modified scheme and compare it with
the original ACJT scheme.

Let `N denote the binary length of modulus N . The system secret key S
requires 2`N bits. As shown in § 3.1, an element in T̃2 \ {∞} can be coded
with `N bits using an affine parametrization. Hence, the common public key
Y consisting of 6 elements of T̃2 requires 6`N bits. The size of exponent ei in
membership certificate [Ai, ei] and of corresponding private key xi are about the
size of N2; therefore, a membership certificate requires roughly 3`N bits and the
user’s private key roughly 2`N bits. Since the size of sj (1 ≤ j ≤ 4) is about the



size of N2, a signature σ = (c, s1, s2, s3, s4, T1, T2, T3) requires approximatively
11`N bits. Typically, for a 80-bit security level (i.e., 2048-bit modulus for the
ACJT scheme and 1024-bit modulus for its torus-based implementation), we
have:

Table 1. Performance comparison: Typical lengths.

ACJT scheme Torus-based scheme
Common public key 12 kb 6 kb
System secret key 4 kb 2 kb
Membership certificate 6 kb 3 kb
User’s private key 4 kb 2 kb
Signature (approx.) 22 kb 11 kb

Our torus-based signatures are not only shorter, as we will see, they are
also faster to generate. We neglect the cost of additions and hash computa-
tions. For the sake of comparison, we assume that exponentiations are done
with the basic square-and-multiply algorithm and that multi-exponentiations
are evaluated with the simultaneous binary exponentiation algorithm (see e.g.
[19, Algorithm 14.88]). A k-exponentiation with exponent of binary length `

then amounts to (` − 1) · (S + 2k−1
2k

M), on average, where S and M represent

the cost of a squaring and of a multiplication in T̃2. It also requires (2k − 2)M
for the precomputation. Since T1, T2 involve exponents of size about `N bits and
T3, d1, d2, d3, d4 involve exponents of size about 2`N bits, the generation of a
signature takes about

`N (S + 1
2M) + `N (S + 1

2M) + 2`N (S + 3
4M) + 2`N (S + 7

8M)

+ 2`N (S + 3
4M) + 2`N (S + 1

2M) + 2`N (S + 3
4M) = 12`NS + 8.25`NM , (10)

neglecting the precomputation.
In our scheme, we have p, q ≡ 3 (mod 4). We can thus take ∆ = −1. In this

case, using projective coordinates, the multiplication of two elements m̄1 = (M1 :

Z1) and m̄2 = (M2 : Z2) in T̃2, m̄3 = m̄1⊗m̄2, simplifies to m̄3 = (M3 : Z3) with
M3 = M1M2 +Z1Z2 and Z3 = M1Z2 +M2Z1 = (M1 +Z1)(M2 +Z2)−M3. Let s
and m denote the cost of a square and a multiplication in ZN . The multiplication
of two elements of T̃2 requires thus 3m. Note that for a mixed multiplication
(i.e., when one of the two operands has its Z-coordinate equal to 1), the cost
reduces to 2m. Squaring m̄1 = (M1 : Z1) can be evaluated as m̄3 = (M3 : Z3)
with Z3 = 2M1Z1 and M3 = (M1 + Z1)2 − Z3 and requires thus 1s + 1m. If the
precomputed values in the k-exponentiation are expressed in affine way (this can
be done with a single inversion and a few multiplications in ZN using the so-called
Montgomery’s trick), we have M = 2m and S = 1s + 1m. Therefore, neglecting
the cost of this inversion in ZN and assuming s = 0.8m, we obtain that the cost of
a torus-based ACJT group signature is about (12 ·1.8+8.25 ·2)`Nm = 38.1 `Nm.



Similarly, from Eq. (10), we obtain that the cost of a regular ACJT group
signature is about (12 · 0.8 + 8.25)`Nm = 17.85 `Nm, assuming again s = 0.8m.

But since the length of `N is twice smaller in T̃2, the expected speed-up factor
amounts to

17.85 `N · (`N )2

38.1 (`N/2) · (`N/2)2
≈ 3.75 .

In practice, the expected speed-up factor is even more spectacular as the
above value assumes that the same exponentiation algorithms are being used;
however, for the same amount of memory, the torus-based implementation can
be sped up using more pre-computed values and higher-order methods. Note also
that the above analysis neglects the cost of inversion in Z×N (in the evaluation of
d1 and d2) for the regular ACJT signatures.

5 Conclusion

This paper extended the concept of torus-based cryptography over the ring of
integers modulo N . Our extended setting finds applications in cryptographic
schemes whose security is related to factoring and discrete logarithms. Typically,
it results in twice shorter keys and outputs and offers faster computation. This
was exemplified with a torus-based implementation of the ACJT group signature
scheme.
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