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ABSTRACT
Threshold cryptography is a fundamental distributed com-
putational paradigm for enhancing the availability and the
security of cryptographic public-key schemes. It does it by
dividing private keys into n shares handed out to distinct
servers. In threshold signature schemes, a set of at least
t + 1 ≤ n servers is needed to produce a valid digital sig-
nature. Availability is assured by the fact that any subset
of t + 1 servers can produce a signature when authorized.
At the same time, the scheme should remain robust (in the
fault tolerance sense) and unforgeable (cryptographically)
against up to t corrupted servers; i.e., it adds quorum con-
trol to traditional cryptographic services and introduces re-
dundancy. Originally, most practical threshold signatures
have a number of demerits: They have been analyzed in a
static corruption model (where the set of corrupted servers
is fixed at the very beginning of the attack), they require
interaction, they assume a trusted dealer in the key gener-
ation phase (so that the system is not fully distributed), or
they suffer from certain overheads in terms of storage (large
share sizes). In this paper, we construct practical fully dis-
tributed (the private key is born distributed), non-interactive
schemes —where the servers can compute their partial sig-
natures without communication with other servers— with
adaptive security (i.e., the adversary corrupts servers dy-
namically based on its full view of the history of the system).
Our schemes are very efficient in terms of computation, com-
munication, and scalable storage (with private key shares of
size O(1), where certain solutions incur O(n) storage costs
at each server). Unlike other adaptively secure schemes, our
schemes are erasure-free (reliable erasure is a hard to assure
and hard to administer property in actual systems). To the
best of our knowledge, such a fully distributed highly con-
strained scheme has been an open problem in the area. In
particular, and of special interest, is the fact that Pedersen’s
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traditional distributed key generation (DKG) protocol can
be safely employed in the initial key generation phase when
the system is born —although it is well-known not to ensure
uniformly distributed public keys. An advantage of this is
that this protocol only takes one round optimistically (in the
absence of faulty player).
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1. INTRODUCTION
Threshold cryptography [29, 30, 15, 28] is a paradigm

where cryptographic keys are divided into n > 1 shares to be
stored by distinct servers, which increases the system’s avail-
ability and resilience to failures. In (t, n)-threshold cryp-
tosystems, private-key operations require the cooperation of
at least t+1 out of n servers (any subset is good). By doing
so, the system remains secure against adversaries that break
into up to t servers. (The mechanism can be viewed as ex-
tending Shamir’s secret sharing of one value [67] to sharing
of the capability to apply cryptographic function efficiently).
The public-key portion of the function (e.g., signature veri-
fication key) does not change from its usual format.

Threshold primitives are widely used in distributed pro-
tocols. Threshold homomorphic encryption schemes are uti-
lized in voting systems (see, e.g., [22, 23]) and multiparty
computation protocols [24]. Threshold signatures enhance
the security of highly sensitive private keys, like those of cer-
tification authorities (e.g., [18]). They can also serve as tools
for distributed storage systems [48, 65]. RSA and Elgamal-
type constructions have been at the core of many threshold
protocols the last two decades (see, e.g., [28, 39, 40, 47]).
A fully distributed public-key system is one where the pub-
lic (and the distributed private) key are jointly generated
by the same servers which end up holding the private key’s



shares (e.g., via a threshold secret sharing [67]). Efficient
distributed key generation (DKG) protocols were put forth
for both RSA [12, 34, 33, 26] and discrete-logarithm-based
systems [62, 41, 35, 16, 43].

Non-Interactive Threshold Signatures. For a long
time, RSA-based threshold signatures have been the only so-
lutions to enable non-interactive distributed signature gen-
eration. By “non-interactive”, we mean that each server can
compute its own partial signature without any online con-
versation with other servers: each server should send a sin-
gle message to an entity, called combiner, which gathers the
signature shares so as to obtain a full signature. Unlike
threshold versions of Schnorr and DSA signatures [42, 39],
threshold RSA signatures are well-suited to non-interactive
signing protocols as they are deterministic. Hence, they
do not require the servers to jointly generate a random-
ized signature component in a first round before starting
a second round. Practical robust non-interactive threshold
signatures were described by Shoup [68] under the RSA as-
sumption and by Katz and Yung [50] assuming the hardness
of factoring. Boldyreva [10] showed a threshold version of
Boneh-Lynn-Shacham signatures [14], which provided an al-
ternative non-interactive scheme with robustness and short
signatures. The latter construction [10] was subsequently
generalized by Wee [69]. These solutions are only known to
resist static attacks, where the set of corrupted servers is
chosen by the adversary at the very beginning of the attack,
before even seeing the public key.

Adaptive Corruptions. More realistically than the static
model, the adaptive corruption model allows adversaries to
choose whom to corrupt at any time, based on their en-
tire view so far. Adaptive adversaries are known to be
strictly (see, e.g., [25]) stronger. The first adaptively se-
cure threshold signatures were independently described in
1999 by Canetti et al. [16] and by Frankel et al. [35, 36].
These constructions rely on a technique, called “single in-
consistent player” (SIP), which inherently requires interac-
tion. The SIP technique basically consists in converting a
t-out-of-n secret sharing into an t-out-of-t secret sharing in
such a way that, in the latter case, there is only one server
whose internal state cannot be consistently revealed to the
adversary. Since this player is chosen at random by the sim-
ulator among the n severs, it is only corrupted with prob-
ability less than 1/2 and, upon this undesirable event, the
simulator can simply rewind the adversary back to one of
its previous states. After this backtracking operation, the
simulator uses different random coins to simulate the view
of the adversary, hoping that the inconsistent player will not
be corrupted again (and the expected number of rewinding-s
is bounded by 2).

Jarecki and Lysyanskaya [49] extended the SIP technique
in order to eliminate the need for servers to reliably erase in-
termediate computation results. However, their adaptively
secure version of the Canetti-Goldwasser threshold cryp-
tosystem [17] requires a substantial amount of interaction
at each private-key operation. The same holds for the adap-
tively secure threshold signatures of Lysyanskaya and Peik-
ert [57] and the universally composable protocols of Abe and
Fehr [1].

In 2006, Almansa, Damg̊ard and Nielsen [4] showed a vari-
ant of Rabin’s threshold RSA signatures [64] and proved
them adaptively secure using the SIP technique and ideas

from [35, 36]. Similar techniques were used in [70] to con-
struct adaptively secure threshold Waters signatures [71].
While the SIP technique provides adaptively secure thresh-
old signatures based on RSA or the Diffie-Hellman assump-
tion, these fall short of minimizing the amount of interac-
tion. The constructions of [35, 36] proceed by turning a
(t, n) polynomial secret sharing into a (t, t) additive secret
sharing by first selecting a pool of at least t participants.
However, if only one of these fails to provide a valid contri-
bution to the signing process, the whole protocol must be
restarted from scratch. The protocol of Almansa et al. [4] is
slightly different in that; like [64], it proceeds by sharing an
RSA private key in an additive (n, n) fashion (i.e., the pri-
vate RSA exponent d is split into shares d1, . . . , dn such that
d =

∑n
i=1 di). In turn, each additive share di is shared in

a (t, n) fashion using a polynomial verifiable secret sharing
and each share di,j of di is distributed to another server j.
This is done in such a way that, if one participant fails to
provide a valid RSA signature share H(M)di , the missing
signature share can be re-constructed by running the recon-
struction algorithm of the verifiable secret sharing scheme
that was used to share di. The first drawback of this ap-
proach is that it is only non-interactive when all players are
honest as a second round is needed to reconstruct missing
multiplicative signature shares H(M)di . Another disadvan-
tage is that players have to store Θ(n) values, where n is
the number of servers, as each player has to store a polyno-
mial share of other players’ additive share. Ideally, we would
like a solution where each player only stores O(1) elements,
regardless of the number of players.

Recently, Libert and Yung [55, 56] gave several construc-
tions of adaptively secure threshold encryption schemes with
chosen-ciphertext security. They also suggested an adap-
tively secure and non-interactive threshold variant [55] of a
signature scheme due to Lewko and Waters [51]. The use of
bilinear maps in composite order groups makes the scheme
of [55] expensive when it comes to verifying signatures: as
discussed by Freeman [38], computing a bilinear map in com-
posite order groups is at least 50 times slower than evalu-
ating the same bilinear map in prime-order groups at the
80-bit security level (things can only get worse at higher se-
curity levels). The techniques of Lewko [52] can be used to
adapt the construction of [55] to the setting of prime-order
groups. In the resulting construction, each signature con-
sists of 6 group elements. The use of asymmetric bilinear
maps (see [19]) allows reducing the signature size to 4 group
elements. Unfortunately, the techniques of [52, 19] assume a
trusted dealer and, if implemented in a distributed manner,
their key generation phase is likely to be communication-
expensive (resorting to generic multiparty secure computa-
tions). In particular, they seem hardly compatible with a
round-optimal DKG protocol. The reason is that [19] re-
quires to generate public keys containing pairs of matrices

of the form gA ∈ Gn×n and gA
−1

∈ Gn×n, for some ma-
trix A ∈ Zn×np , and it is not clear how these non-linear
operations can be achieved in a round-optimal distributed
manner (let alone with adaptive security). Finally, the so-
lutions of [55] require reliable erasures due to the use of the
dual system encryption technique [72, 51] and the existence
of several distributions of partial signatures.

Our Contributions. We consider the problem of devising
a fully distributed, non-interactive, robust, and adaptively



secure construction which is as efficient as the centralized
schemes obtained from [55, 19] and does not rely on era-
sures. In particular, we want to retain private-key shares of
O(1) size, no matter how many players are involved in the
protocol. Here, “fully distributed” implies that the public
key is jointly generated by all players —so that no trusted
dealer is needed— while guaranteeing the security of the
scheme against an adaptive adversary. As mentioned above,
we wish to avoid the costly and hard-to-control use of re-
liable erasures. This means that, whenever the adversary
corrupts a player, it learns the entire history of that player.

At the same time, the distributed key generation phase
should be as communication-efficient as possible. Ideally,
a single communication round should be needed when the
players follow the protocol. Finally, we would like to avoid
interaction during the distributed signing process. To the
best of our knowledge, no existing solution combines all the
aforementioned highly constraining properties. We thus pro-
vide the first candidates.

Our constructions are derived from linearly homomorphic
structure-preserving signatures (LHSPS). As defined by Abe
et al. [2, 3], structure-preserving signatures (SPS) are sig-
nature schemes where messages and public keys live in an
abelian group over which a bilinear map is efficiently com-
putable. Recently, Libert et al. [54] considered SPS schemes
with additive homomorphic properties: given signatures on
linearly independent vectors of group elements, anyone can
publicly compute a signature on any linear combination of
these vectors. In order to sign a message M ∈ {0, 1}∗ in a
distributed manner, our idea is to hash M onto a vector of
group elements which is signed using the LHSPS scheme
of [54]. In the random oracle model, we prove that the
resulting system is a secure digital signature even if the
underlying LHSPS scheme satisfies a weak security defi-
nition. Since the LHSPS signing algorithm is determin-
istic and further presents certain homomorphic properties
over the key space, the resulting signature is also amenable
for non-interactive distributed signature generation. In the
threshold setting, we take advantage of specific properties
of the LHSPS scheme of [54] to prove that the scheme pro-
vides security against adaptive corruptions in the absence of
secure erasures.

More surprisingly, we prove that the scheme remains adap-
tively secure if the public key is generated using Pedersen’s
DKG protocol [62]. The latter basically consists in having all
players verifiably share a random value using Feldman’s ver-
ifiable secret sharing (VSS) [32] before computing the shared
secret as the sum of all well-behaved players’ contributions.
While very efficient (as only one round is needed in the ab-
sence of faulty players), this protocol is known [41] not to
guarantee the uniformity of the resulting public key. Indeed,
even a static adversary can bias the distribution by corrupt-
ing only two players. Nonetheless, the adversary does not
have much control on the distribution of the public key and
Pedersen’s protocol can still be safely used in some applica-
tions, as noted by Gennaro et al. [42, 43]. For example, it
was recently utilized by Cortier et al. [21] in the context of
voting protocols. However, these safe uses of Pedersen’s pro-
tocol were in the static corruption setting and our scheme
turns out to be its first application in an adaptive corrup-
tion model. To our knowledge, it is also the first adaptively
secure threshold signature where the DKG phase takes only
one round when all players follow the specification.

As an extension of our first scheme, we describe a variant
supporting signature aggregation: as suggested by Boneh
et al. [13], a set of n signatures for distinct public keys
PK 1, . . . ,PK s on messages M1, . . . ,Ms can be aggregated
into a single signature σ which convinces a verifier that, for
each i, Mi was signing by the private key underlying PK i. In
the threshold setting, this property allows for de-centralized
certification authorities while enabling the compression of
certification chains.

As a final contribution, we give a non-interactive adap-
tively secure threshold signature scheme in the standard
model that retains all the useful properties (including the
erasure-freeness) of our first realization. In particular, Ped-
ersen’s protocol can still be used in the key generation phase
if a set of uniformly random common parameters —which
can be shared by many public keys— is set up beforehand.
As is natural for standard-model constructions, this scheme
is somewhat less efficient than its random-oracle-based coun-
terpart but it remains sufficiently efficient for practical ap-
plications.

Like Gennaro et al. [43] and Cortier et al. [21], we prove
security via a direct reduction from the underlying number
theoretic assumption instead of reducing the security of our
schemes to that of their centralized version. We empha-
size that our proof technique is different from those of [43,
21], where the reduction runs Pedersen’s DKG protocol on
behalf of honest players and embeds a discrete logarithm
instance in the contribution of honest players to the public
key, using a proper simulation of Feldman’s verifiable secret
sharing. In the adaptive corruption setting, this would at
least require an adaptively secure variant of Feldman’s VSS,
such as [1], and thus extra communications. Instead, our
reduction always faithfully runs the protocol on behalf of
honest players, and thus always knows their internal state
so as to perfectly answer corruption queries. Yet, we can
use the adversary’s forgery to break the underlying hard-
ness assumption by taking advantage of key homomorphic
properties of the scheme, which allow us to turn a forgery
for the jointly generated public key —of possibly skewed
distribution— into a forgery for some uniformly random key.

2. BACKGROUND

2.1 Definitions for Threshold Signatures
A non-interactive (t, n)-threshold signature scheme con-

sists of a tuple Σ = (Dist-Keygen, Share-Sign, Share-Verify,
Verify,Combine) of efficient algorithms or protocols such that:

Dist-Keygen(params, λ, t, n): This is an interactive protocol
involving n players P1, . . . , Pn, which all take as input
common public parameters params, a security param-
eter λ ∈ N as well as a pair of integers t, n ∈ poly(λ)
such that 1 ≤ t ≤ n. The outcome of the protocol is
the generation of a public key PK , a vector of private
key shares SK = (SK 1, . . . ,SKn) where Pi only ob-
tains SK i for each i ∈ {1, . . . , n}, and a public vector
of verification keys VK = (VK 1, . . . ,VKn).

Share-Sign(SK i,M): is a possibly randomized algorithm that
takes in a message M and a private key share SK i. It
outputs a signature share σi.

Share-Verify(PK ,VK,M, (i, σi)): is a deterministic algorithm
that takes as input a message M , the public key PK ,



the verification key VK and a pair (i, σi) consisting
of an index i ∈ {1, . . . , n} and signature share σi. It
outputs 1 or 0 depending on whether σi is deemed as
a valid signature share or not.

Combine(PK ,VK,M, {(i, σi)}i∈S): takes as input a public
key PK , a message M and a subset S ⊂ {1, . . . , n} of
size |S| = t + 1 with pairs {(i, σi)}i∈S such that i ∈
{1, . . . , n} and σi is a signature share. This algorithm
outputs either a full signature σ or ⊥ if {(i, σi)}i∈S
contains ill-formed partial signatures.

Verify(PK ,M, σ): is a deterministic algorithm that takes as
input a message M , the public key PK and a signature
σ. It outputs 1 or 0 depending on whether σ is deemed
valid share or not.

We shall use the same communication model as in, e.g.,
[41, 42, 43], which is partially synchronous. Namely, commu-
nications proceed in synchronized rounds and sent messages
are always received within some time bound in the same
round. All players have access to a public broadcast chan-
nel, which the adversary can use as a sender and a receiver.
However, the adversary cannot modify messages sent over
this channel, nor prevent their delivery. In addition, we as-
sume private and authenticated channels between all pairs
of players.

In the adaptive corruption setting, the security of non-
interactive threshold signatures can be defined as follows.

Definition 1. A non-interactive threshold signature sche-
me Σ is adaptively secure against chosen-message attacks if
no PPT adversary A has non-negligible advantage in the
game hereunder. At any time, we denote by C ⊂ {1, . . . , n}
and G := {1, . . . , n} \ C the dynamically evolving subsets of
corrupted and honest players, respectively. Initially, we set
C = ∅.

1. The game begins with an execution of the DKG proto-
col Dist-Keygen(params, λ, t,N) during which the chal-
lenger plays the role of honest players Pi and the ad-
versary A is allowed to corrupt players at any time.
When A chooses to corrupt a player Pi, the challenger
sets G = G \ {i}, C = C ∪ {i} and returns the internal
state of Pi. Moreover, A is allowed to act on behalf
of Pi from this point forward. The protocol ends with
the generation of a public key PK , a vector of private
key shares SK = (SK 1, . . . ,SKn) and the correspond-
ing verification keys VK = (VK 1, . . . ,VKn). At the
end of this phase, the public key PK and {SK i}i∈C are
available to the adversary A.

2. On polynomially many occasions, A adaptively inter-
leaves two kinds of queries.

− Corruption query: At any time, A can choose to
corrupt a server. To this end, A chooses i ∈
{1, . . . , n} and the challenge returns SK i before
setting G = G \ {i} and C = C ∪ {i}.

− Signing query: For any i ∈ G, A can also sub-
mit a pair (i,M) and ask for a signature share
on an arbitrary message M on behalf of player
Pi. The challenger responds by computing σi ←
Share-Sign(SK i,M) and returning σ to A.

3. A outputs a message M? and a signature σ?. We de-
fine V = C ∪ S, where S ⊂ {1, . . . , n} is the subset of
players for which A made a signing query of the form
(i,M?). The adversary wins if the following conditions
hold: (i) |V| < t+ 1; (ii) Verify(PK ,M?, σ?) = 1.

A’s advantage is defined as its probability of success, taken
over all coin tosses.

Since we focus on non-interactive schemes, Definition 1 al-
lows the adversary to individually query each partial signing
oracle whereas usual definitions only provide the adversary
with an oracle that runs the distributed signing protocol
on behalf of all honest players. We also remark that Defini-
tion 1 allows the adversary to obtain some partial signatures
on the forgery message M? as long as its output remains a
non-trivial forgery. In a weaker (but still compelling) defi-
nition, partial signing queries for M? would be completely
disallowed. In the following, we will stick to the stronger
definition.

2.2 Hardness Assumptions
We first recall the definition of the Decision Diffie-Hellman

problem.

Definition 2. In a cyclic group G of prime order p, the
Decision Diffie-Hellman Problem (DDH) in G, is to distin-
guish the distributions (g, ga, gb, gab) and (g, ga, gb, gc), with

a, b, c
R← Zp. The Decision Diffie-Hellman assumption is the

intractability of DDH for any PPT distinguisher.

We use bilinear maps e : G × Ĝ → GT over groups of
prime order p. We will work in asymmetric pairings, where
we have G 6= Ĝ so as to allow the DDH assumption to hold
in G (see, e.g., [66]). In certain asymmetric pairing con-
figurations, DDH is even believed to hold in both G and
Ĝ. This assumption is called Symmetric eXternal Diffie-
Hellman (SXDH) assumption and it implies that no isomor-

phism between Ĝ and G be efficiently computable.
For convenience, we also use the following problem in

asymmetric pairing configurations.

Definition 3 ([3]). The Double Pairing problem (DP)

in (G, Ĝ,GT ) is, given (ĝz, ĝr) ∈R Ĝ2, to find a pair (z, r) ∈
G2 \ {(1G, 1G)} that satisfies e(z, ĝz) · e(r, ĝr) = 1GT . The
Double Pairing assumption asserts that the DP problem is
infeasible for any PPT algorithm.

The DP problem is known [3] to be at least as hard as

DDH in Ĝ. Given (ĝz, ĝr, ĝz
θ1 , ĝr

θ2), a solution (z, r) allows
deciding whether θ1 = θ2 or not by testing if the equality
e(z, ĝz

θ1) · e(r, ĝrθ2) = 1GT holds.

2.3 Linearly Homomorphic Structure-Preser-
ving Signatures

Structure-preserving signatures [2, 3] are signature schemes
that allow signing elements of an abelian group while pre-
serving their algebraic structure, without hashing them first.
In [54], Libert et al. described structure-preserving signa-
tures with linearly homomorphic properties. Given signa-
tures on several vectors ~M1, . . . , ~Mn of group elements, any-
one can publicly derive a signature on any linear combina-
tion of ~M1, . . . , ~Mn. They suggested the following scheme,
which is a one-time LHSPS (namely, it only allows signing
one linear subspace) based on the DP assumption.



Keygen(λ,N): Given a security parameter λ and the dimen-
sion N ∈ N of the subspace to be signed, choose bi-
linear group (G, Ĝ,GT ) of prime order p > 2λ. Then,

choose ĝz, ĝr
R← Ĝ. For k = 1 to N , pick χk, γk

R←
Zp and compute ĝk = ĝz

χk ĝr
γk . The private key

is sk = {χk, γk}Ni=1 while the public key consists of
pk =

(
ĝz, ĝr, {ĝk}Nk=1

)
.

Sign(sk, (M1, . . . ,MN )): To sign (M1, . . . ,MN ) ∈ GN using

sk = {χk, γk}Nk=1, compute z =
∏N
k=1 M

−χk
k and r =∏N

k=1 M
−γk
k . Return σ = (z, r) ∈ G2.

SignDerive(pk, {(ωi, σ(i))}`i=1): Given the public key pk and

` tuples (ωi, σ
(i)), parse σ(i) as σ(i) =

(
zi, ri

)
∈ G3

for i = 1 to `. Then, compute and return σ = (z, r),

where z =
∏`
i=1 z

ωi
i and r =

∏`
i=1 r

ωi
i .

Verify(pk, σ, (M1, . . . ,MN )): Given a purported signature σ =
(z, r) ∈ G2 and a vector (M1, . . . ,MN ), return 1 if and
only if (M1, . . . ,MN ) 6= (1G, . . . , 1G) and (z, r) satisfies

1GT = e(z, ĝz) · e(r, ĝr) ·
∏N
k=1 e(Mk, ĝk).

A useful property of the scheme is that, if the DP assump-
tion holds, it is computationally hard to come up with two
distinct signatures on the same vector, even if the private
key is available.

3. A PRACTICAL ADAPTIVELY SECURE
NON-INTERACTIVE THRESHOLD SIG-
NATURE

The construction notably relies on the observation that,
as shown in the full version of the paper [53], any one-time
linearly homomorphic SPS can be turned into a fully secure
ordinary signature by introducing a random oracle. The
public key is simply that of a linearly homomorphic SPS
for vectors of dimension n > 1. Messages are signed by
hashing them to a vector ~H ∈ Gn and generating a one-
time homomorphic signature on ~H. The security reduction
programs the random oracle in such a way that all signed
messages are hashed into a proper subspace of Gn whereas,
with some probability, the adversary forges a signature on
a message which is hashed outside this subspace. Hence, a
forgery for this message translates into an attack against the
underlying linearly homomorphic SPS.

In the threshold setting, our system can be seen as an
adaptively secure variant of Boldyreva’s threshold signature
[10], which builds on the short signatures of Boneh, Lynn,
and Shacham [14].

The DKG phase uses Pedersen’s protocol [62] (or, more
precisely, a variant with two generators). Each player verifi-
ably shares a random secret using Pedersen’s verifiable secret
sharing [63] —where verification is enabled by having all par-
ties broadcast commitments to their secret polynomials—
and the final secret key is obtained by summing up the shares
of non-disqualified players. When all parties follow the pro-
tocol, a single communication round is needed. Moreover,
we do not need to rely on zero-knowledge proofs or reliable
erasures at any time.

In order to sign a message using his private key share,
each player first hashes the message M to obtain a vec-
tor (H1, H2) ∈ G2 of two group elements, which can be
signed using the linearly homomorphic structure-preserving

signature of Section 2.3. We actually build on the observa-
tion that any one-time linearly homomorphic SPS implies
a fully secure digital signature in the random oracle model.
In the threshold setting, we take advantage of two specific
properties in the underlying homomorphic signature. First,
it is also key homomorphic1 and thus amenable for non-
interactively distributing the signing process. Second, in
the security proof of [54], the reduction always knows the
private key, which allows consistently answering adaptive
corruption queries.

3.1 Description
In the description below, we assume that all players agree

on public parameters params consisting of asymmetric bilin-
ear groups (G, Ĝ,GT ) of prime order p > 2λ with generators

ĝz, ĝr ∈R Ĝ and a hash function H : {0, 1}∗ → G2 that
ranges over G×G. This hash function is modeled as a ran-
dom oracle in the security analysis. While no party should
know logĝz (ĝr), we do not need an extra round to generate
ĝr in a distributed manner as it can simply be derived from
a random oracle.

Dist-Keygen(params, λ, t, n): Given common public parame-

ters params = {(G, Ĝ,GT ), ĝz, ĝr, H}, a security pa-
rameter λ and integers t, n ∈ N such that n ≥ 2t + 1,
each player Pi conducts the following steps.

1. Each player Pi shares two pairs {(aik0, bik0)}2k=1.
To this end, he does the following:

(a) For each k ∈ {1, 2}, choose random polyno-
mials Aik[X] = aik0 + aik1X + · · · + aiktX

t,
Bik[X] = bik0 + bik1X + · · ·+ biktX

t ∈ Zp[X]
of degree t and broadcast

Ŵik` = ĝz
aik` ĝr

bik` ∀` ∈ {0, . . . , t} .

(b) For j = 1 to n, send {(Aik(j), Bik(j))}2k=1 to
Pj .

2. For each set of shares {(Ajk(i), Bjk(i))}2k=1 re-
ceived from another player Pj , Pi verifies that

ĝ
Ajk(i)
z ĝ

Bjk(i)
r =

t∏
`=0

Ŵ i`

jk` for k = 1, 2 . (1)

If these equalities do not both hold, Pi broadcasts
a complaint against the faulty sender Pj .

3. Any player who received strictly more than t com-
plaints from other players is immediately disqual-
ified. Each player Pi who received a complaint
from another player Pj responds by returning the
correct shares {(Aik(j), Bik(j))}2k=1. If any of
these new shares does not satisfy (1), Pi is dis-
qualified. Let Q ⊂ {1, . . . , n} be the set of non-
disqualified players at the end of step 3.

4. The public key is obtained as PK = {ĝk}2k=1,

where ĝk =
∏
i∈Q Ŵik0 = ĝ

∑
i∈Q aik0

z ĝ
∑

i∈Q bik0
r .

1Namely, the private key space forms an additive group such
that, for any message M , given any two signatures σ1 ←
Sign(sk1,M) and σ2 ← Sign(sk2,M), anyone can compute
a valid signature on M for the private key sk1 + sk2.



Each Pi locally defines his private key share

SK i = {(Ak(i), Bk(i))}2k=1

= {
(∑
j∈Q

Ajk(i),
∑
j∈Q

Bjk(i)
)
}2k=1

and anyone can publicly compute his verification
key VK i =

(
V̂1,i, V̂2,i

)
as

VK i =
(
ĝz
A1(i)ĝr

B1(i), ĝz
A2(i)ĝr

B2(i))
=
(∏
j∈Q

t∏
`=0

Ŵ i`

j1` ,
∏
j∈Q

t∏
`=0

Ŵ i`

j2`

)
.

For any disqualified player i ∈ {1, . . . , n} \Q, the
i-th private key share is implicitly set as SK i =
{(0, 0)}2k=1 and the corresponding verification key
is VK i = (1Ĝ, 1Ĝ).

This completes the generation of the private key shares
SK = (SK 1, . . . ,SKn), the vector of verification keys
VK = (VK 1, . . . ,VKn) and the public key, which con-

sists of PK =
(
params,

(
ĝ1, ĝ2

))
.

When the protocol ends, the obtained private key shares
{Ak(i)}2k=1 and {Bk(i)}2k=1 all lie on t-degree polynomials
Ak[X] =

∑
j∈QAjk[X] and Bk[X] =

∑
j∈QBjk[X]. Each

player also holds an additive share {(aik0, bik0)}2k=1 of the se-
cret key {(Ak(0), Bk(0)) = (

∑
i∈Q aik0,

∑
i∈Q bik0)}2k=1 but

these shares will not be used in the scheme.

Share-Sign(i,SK i,M): To generate a partial signature on a
message M ∈ {0, 1}∗ using his private key share SK i =
{(Ak(i), Bk(i))}2k=1, Pi first computes the hash value
(H1, H2) = H(M) ∈ G × G and generates the partial
signature σi = (zi, ri) ∈ G2 as

zi =

2∏
k=1

H
−Ak(i)
k , ri =

2∏
k=1

H
−Bk(i)
k .

Share-Verify
(
PK ,VK,M, (i, σi)

)
: Given a candidate partial

signature σi = (zi, ri) ∈ G2 and the verification key

VK i =
(
V̂1,i, V̂2,i

)
, the partial verification algorithm

first computes (H1, H2) = H(M) ∈ G2. It returns 1 if

the equality e(zi, ĝz) ·e(ri, ĝr) ·
∏2
k=1 e(Hk, V̂k,i) = 1GT

holds and 0 otherwise.

Combine(PK ,VK,M, {(i, σi)}i∈S): Given a (t+ 1)-set with
valid shares {(i, σi)}i∈S , parse the signature share σi
as
(
zi, ri

)
∈ G2 for each i ∈ S. Then, compute

(z, r) =
(∏
i∈S

z
∆i,S(0)

i ,
∏
i∈S

r
∆i,S(0)

i

)
by Lagrange interpolation in the exponent. Return the
pair (z, r) ∈ G2.

Verify
(
PK ,M, σ

)
: Given a purported signature σ = (z, r) ∈

G2, compute (H1, H2) = H(M) ∈ G×G and return 1
if and only if the following equality holds:

e(z, ĝz) · e(r, ĝr) · e(H1, ĝ1) · e(H2, ĝ2) = 1GT .

If the scheme is instantiated using Barreto-Naehrig curves
[5] at the 128-bit security level, each signature consists of 512
bits. For the same security level, RSA-based threshold sig-
natures like [68, 4] require 3076 bits. The scheme is also very
efficient from a computational standpoint. Each server only
has to compute two multi-exponentiations with two base el-
ements and two“hash-on-curve”operations. The verifier has
to compute a product of four pairings.

At the end of the key generation phase, each player only
needs to store a private key share SK i = {(Ak(i), Bk(i))}2k=1

of constant-size —whereas solutions like [4] incur the storage
of O(n) elements at each player— and can erase all interme-
diate values, including the polynomials Aik[X] and Bik[X].
However, we insist that the security analysis does not require
reliable erasures. When a player is corrupted, we assume
that the adversary learns the entire history of this player.

3.2 Security
Although the public key is not guaranteed to be uniform

due to the use of Pedersen’s DKG protocol, the key homo-
morphic property allows the reduction to turn the adver-
sary’s forgery into a valid signature with respect to some
uniformly random public key obtained by multiplying hon-
est users’ contributions to the public key. This is sufficient
for solving a given Double Pairing instance.

Theorem 3.1. The scheme provides adaptive security un-
der the SXDH assumption in the random oracle model. For
any PPT adversary A, there exist DDH distinguishers B1

and B2 with comparable running time in the groups G and
Ĝ, respectively.

A detailed proof of Theorem 3.1 is available in the full ver-
sion of the paper [53]. It proceeds with a sequence of games
which can be outlined as follows.

The first game is the real game where the challenger as-
sumes the role of all honest players in the distributed key
generation phase. Since it controls a majority of players,
the challenger knows {Ajk[X], Bjk[X]}j∈Q,k∈{1,2} and the
private key shares {SK j}j∈Q of all non-disqualified players
—either because it obtained at least t+ 1 polynomial shares
{(Ajk(i), Bjk(i))}i∈G,k∈{1,2} for each j ∈ Q or because it
chose the polynomials itself— at the end of Dist-Keygen.

In subsequent games, the challenger applies Coron’s proof
technique for Full Domain Hash signatures [20]. At each
random oracle query H(M), it flips a coin ϑM ∈ {0, 1} that
takes the value 0 with probability 1/qs and the value 1 with
probability 1/(qs + 1), where qs is the number of signing
queries. If ϑM = 1, the challenger defines H(M) to be a
random vector of G2. If ϑM = 0, the message M is hashed
to a subspace of dimension 1. We prove that, although
H does no longer behave as an actual random oracle, this
change should not affect the adversary’s view if the DDH
assumption holds in G. Coron’s analysis [20] shows that,
with probability Ω(1/qs), the following conditions are ful-
filled: (i) The adversary only obtains partial signatures on
messages M1, . . . ,Mqs that are hashed in a one-dimensional
subspace; (ii) The adversary’s forgery involves a message
M? such that (H?

1 , H
?
2 ) = H(M?) is linearly independent of

the vectors {(H1,i, H2,i) = H(Mi)}qsi=1. Condition (i) en-
sures that the adversary obtains little information about
the private key shares {SK i}i∈G and the additive shares
{aik0, bik0}i∈G,k∈{1,2} of honest players. Hence, if the chal-
lenger computes the additive contribution of honest play-



ers to a signature on the vector (H?
1 , H

?
2 ) = H(M?), this

contribution is completely unpredictable by the adversary
due to condition (ii). With overwhelming probability, this
contribution does not coincide with the one that can be ex-
tracted (using the additive shares {ajk0, bjk0}j∈Q\G, k∈{1,2}
that the reduction knows from the key generation phase)
from the adversary’s forgery (z?, r?) using the key homo-
morphic property of the scheme. The challenger thus obtains
two distinct linearly homomorphic signatures on the vector
(H?

1 , H
?
2 ), which allows solving an instance of the Double

Pairing problem.
The proof of Theorem 3.1 goes through if, during the

DKG phase, each player Pi additionally publicizes the pair
(Zi0, Ri0) =

(
g−ai10h−ai20 , g−bi10h−bi20

)
, for public genera-

tors g, h ∈ G, which satisfies

e(Zi0, ĝz) · e(Ri0, ĝr) · e(h, Ŵi10) · e(g, Ŵi20) = 1GT

and forms a LHSPS on (g, h) for the public key {Ŵik0}2k=1.
Based on this observation, we describe a simple modification
of the scheme that supports signature aggregation in the full
version of the paper [53].

3.3 Adding Proactive Security
The scheme readily extends to provide proactive security

[61, 47, 37] against mobile adversaries that can potentially
corrupt all the players at some point as long as it never con-
trols more than t players at any time. By having the players
refreshing all shares (without changing the secret) at discrete
time intervals, the scheme remains secure against an adver-
sary corrupting up to t players during the same period. This
is achieved by having all players run a new instance of Ped-
ersen’s DKG protocol where the shared secret is {(0, 0)}2k=1

and locally add the resulting shares to their local shares be-
fore updating {VK i}ni=1 accordingly.

The techniques of [46, Section 4] can also be applied to
detect parties holding a corrupted share (due to a crash dur-
ing an update phase or an adversarial behavior) and restore
the correct share if necessary.

4. A CONSTRUCTION IN THE STANDARD
MODEL

This section gives a round-optimal construction in the
standard model. We remark that, under the Decision Linear
assumption [11], any one-time LHSPS in symmetric bilinear
groups can be turned into a full-fledged digital signature, as
shown in the full version of the paper. In the threshold set-
ting, we need to rely on specific properties of the underlying
LHSPS in order to achieve adaptive security without relying
on a trusted dealer.

The scheme relies on the Groth-Sahai non-interactive wit-
ness indistinguishable (NIWI) proof systems [45], which are
recalled in Appendix A. In its centralized version, a signa-
ture consists of a NIWI proof of knowledge —somewhat in
the spirit of Okamoto’s signature scheme [60]— of a one-time
linearly homomorphic signature on a fixed vector g ∈ G of
dimension n = 1. To generate this proof, the signer forms

a Groth-Sahai [45] common reference string (CRS) (~f, ~fM )
using the bits of the message M , according to a technique
suggested by Malkin et al. [58]. Due to the witness indistin-
guishability property of Groth-Sahai proofs, no information
leaks about the private key of the underlying one-time ho-
momorphic signature. For this reason, when the adversary

creates a fake signature, the reduction is able to extract a
different homomorphic signature than the one it can com-
pute. Hence, it obtains two distinct signatures on the same
vector, which allows solving an instance of the DP problem.

The scheme can also be seen as a threshold version of (a
variant of) the signature presented in [58]. In order to dis-
tribute the signing process, we take advantage of the homo-
morphic properties of Groth-Sahai proofs. More precisely,
we use the fact that linear pairing product equations and
their proofs can be linearly combined in order to obtain a
valid proof for the desired statement when performing a La-
grange interpolation in the exponent. In order to avoid inter-
action during the signing process, we leverage the property
that the centralized signature scheme is key homomorphic.

However, we have to prove that the scheme remains adap-
tively secure when the DKG phase uses Pedersen’s proto-
col [62]. To this end, we take further advantage of the key
homomorphic property. In the security proof, we show that,
if the adversary can forge a signature for a non-uniform pub-
lic key PK , we can turn this forgery into one for another
public key PK ′, which is uniformly distributed.

In the following notations, for each h ∈ G and any vec-
tor ~g = (g1, g2) ∈ G2, we denote by E(~g, ĥ) the vector

(e(g1, ĥ), e(g2, ĝ)) ∈ G2
T .

Here, we assume public parameters params made of asym-
metric bilinear groups (G, Ĝ,GT ) of prime order p > 2λ with

generators g ∈R G, ĝz, ĝr ∈R Ĝ and vectors ~f = (f, h) ∈ G2

and ~fi = (fi, hi)
R← G2 for i = 0 to L, where L ∈ poly(λ).

Dist-Keygen(params, λ, t, n): This protocol proceeds as in the
scheme of Section 3. Namely, given common param-

eters params = {(G, Ĝ,GT ), g, ĝz, ĝr, ~f, {~fi}Li=0}, a se-
curity parameter λ and integers t, n ∈ N such that
n ≥ 2t+1, each player Pi conducts the following steps.

1. Each player Pi shares a random pair (ai0, bi0) ac-
cording to the following step:

(a) Pick random polynomialsAi[X] = ai0+ai1X+
· · ·+aitXt, Bi[X] = bi0+bi1X+· · ·+bitXt of

degree t and broadcast Ŵi` = ĝz
ai` ĝr

bi` for
all ` ∈ {0, . . . , t}.

(b) For j = 1 to n, send (Ai(j), Bi(j)) to Pj .

2. For each received shares (Aj(i), Bj(i)), player Pi
verifies that

ĝ
Aj(i)
z ĝ

Bj(i)
r =

t∏
`=0

Ŵ i`

j` . (2)

If the latter equality does not hold, Pi broadcasts
a complaint against Pj .

3. Any player receiving more than t complaints is
disqualified. Each player Pi who received a com-
plaint from another player Pj responds by return-
ing the correct shares (Ai(j), Bi(j)). If any of
these new shares fails to satisfy (2), the faulty
Pi is expelled. Let Q ⊂ {1, . . . , n} be the set of
non-disqualified players at the end of step 3.

4. The public key PK is obtained as PK = ĝ1, where

ĝ1 =
∏
i∈Q Ŵi0 = ĝ

∑
i∈Q ai0

z ĝ
∑

i∈Q bi0
r . Each player

Pi locally defines his private key share as SK i =
(A(i), B(i)) =

(∑
j∈QAj(i),

∑
j∈QBj(i)

)
and any-

one can publicly compute his verification key as



VK i = V̂i = ĝz
A(i)ĝr

B(i) =
∏
j∈Q

∏t
`=0 Ŵ

i`

j` .

Any disqualified player i ∈ {1, . . . , n} \ Q is im-
plicitly assigned the share SK i = (0, 0) and the
matching verification key VK i = 1Ĝ.

At the end of the protocol, the vector of private key
shares is SK = (SK 1, . . . ,SKn) and the correspond-
ing vector of verification keys VK = (VK 1, . . . ,VKn).
The public key consists of PK =

(
params, ĝ1

)
.

Share-Sign(SK i,M): To generate a partial signature on a L-
bit message M = M [1] . . .M [L] ∈ {0, 1}L using SK i =

(A(i), B(i)), define (zi, ri) = (g−A(i), g−B(i)).

1. Using the bits M [1] . . .M [L] of M ∈ {0, 1}L, de-

fine the vector ~fM = ~f0 ·
∏L
i=1

~f
M [i]
i so as to as-

semble a Groth-Sahai CRS fM = (~f, ~fM ).

2. Using the CRS fM = (~f, ~fM ), compute Groth-

Sahai commitments ~Cz,i = (1G, zi) · ~f
νz,1
1 · ~fνz,2M

and ~Cr,i = (1G, ri) · ~fνr,1,i · ~f
νr,2,i
M to the group

elements zi and ri, respectively. Then, generate

a NIWI proof ~̂πi = (π̂1,i, π̂2,i) ∈ Ĝ2 that commit-
ted elements (zi, ri) ∈ G2 satisfy the verification

equation 1GT = e(zi, ĝz) · e(ri, ĝr) · e(g, V̂i). This
proof is obtained as

~̂πi = (π̂1,i, π̂2,i)

=
(
ĝz
−νz,1,i · ĝr−νr,1,i , ĝz−νz,2,i · ĝr−νr,2,i

)
Return σi = ( ~Cz,i, ~Cr,i, ~̂πi) ∈ G4 × Ĝ2.

Share-Verify(PK ,VK,M, (i, σi)): Given M ∈ {0, 1}L and a

candidate σi, parse σi as σi = (~Cz,i, ~Cr,i, ~̂πi). Define
~fM = ~f0 ·

∏L
i=1

~f
M [i]
i and return 1 if ~̂πi = (π̂1,i, π̂2,i)

satisfies

E
(
(1G, g), V̂i

)−1

= E
(
~Cz,i, ĝz

)
· E
(
~Cr,i, ĝr

)
· E(~f, π̂1,i) · E(~fM , π̂2,i)

and 0 otherwise.

Combine(PK ,VK,M, {(i, σi)}i∈S): Given a (t+ 1)-set with
valid shares {(i, σi)}i∈S , parse each signature share σi
as ( ~Cz,i, ~Cr,i, ~̂πi) ∈ G4×Ĝ2, where ~̂πi = (π̂1,i, π̂2,i), for

all i ∈ S. Then, compute ( ~C′z, ~C
′
r, π̂
′
1, π̂
′
2) as(∏

i∈S

~C
∆i,S(0)

z,i ,
∏
i∈S

~C
∆i,S(0)

r,i ,
∏
i∈S

π̂
∆i,S(0)

1,i ,
∏
i∈S

π̂
∆i,S(0)

2,i

)
by Lagrange interpolation in the exponent. Finally,
re-randomize ( ~C′z, ~C

′
r, π̂
′
1, π̂
′
2) and output the resulting

re-randomized full signature σ = ( ~Cz, ~Cr, π̂1, π̂2).

Verify(PK ,M, σ): Given a message M ∈ {0, 1}L and a pur-

ported signature σ, parse σ as (~Cz, ~Cr, ~̂π) ∈ G4 × Ĝ2.

Define ~fM = ~f0 ·
∏L
i=1

~f
M [i]
i and return 1 if and only

if ~̂π = (π̂1, π̂2) satisfies

E
(
(1G, g), ĝ1

)−1

= E
(
~Cz, ĝz

)
· E
(
~Cr, ĝr

)
· E(~f, π̂1) · E(~fM , π̂2) .

The scheme can be simplified by having each player set his
private key share as SK i = (g−A(i), g−B(i)) so as to spare
two exponentiations in the signing phase. In the description,
we defined SK i as (A(i), B(i)) to insist that no reliable era-
sures are needed. At each corruption query, the adversary
obtains (A(i), B(i)) and, not only (g−A(i), g−B(i)). In any
case, each player only needs to store two elements of Zp.

At the 128-bit security level, if each element of G (resp.

Ĝ) has a 256-bit (resp. 512 bit) representation on Barreto-
Naehrig curves [5], we only need 2048 bits per signature.

Theorem 4.1. The scheme provides adaptive security un-
der the SXDH assumption in the standard model. For any
PPT adversary A, there exist DDH distinguishers B1 and
B2 with comparable running time in G and Ĝ, respectively.
(The proof is available in the full version of the paper).
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APPENDIX
A. GROTH-SAHAI NON-INTERACTIVE

PROOF SYSTEMS
In [45], Groth and Sahai described efficient non-interactive

witness indistinguishable (NIWI) proof systems of which one
instantiation relies on the SXDH assumption. This instanti-
ation uses prime order groups and a common reference string

containing three vectors ~f1, ~f2 ∈ G2, where ~f1 = (g, f1),
~f2 = (h, f2), for some g, h, f1, f2 ∈ G. To commit to a group

element X ∈ G, the prover chooses r, s
R← Zp and computes

~C = (1, X)· ~f1
r
· ~f2

s
. On a perfectly sound common reference

string, we have ~f2 = ~f1
ξ
, for some ξ ∈ Zp. Commitments

~C = (gr+ξs, fr+ξs1 ·X) are extractable as their distribution
coincides with that of an Elgamal ciphertexts [31] and the
committed X can be extracted using β = logg(f1). In the

witness indistinguishability (WI) setting, the vector ~f2 is

chosen so that (~f1, ~f2) are linearly independent vectors and
~C is a perfectly hiding commitment. Under the DDH as-
sumption in G, the two kinds of CRS can be exchanged for
one another without the adversary noticing.

To convince the verifier that committed variables satisfy
a set of relations, the prover computes one commitment per
variable and one proof element per equation. Such NIWI
proofs can be efficiently generated for linear pairing-product
equations, which are relations of the type

n∏
i=1

e(Xi,Ai) = tT , (3)

for variables X1, . . . ,Xn ∈ G and constants A1, . . . ,An ∈ Ĝ,
tT ∈ GT , aij ∈ Zp, for i, j ∈ {1, . . . , n}.

Under the SXDH assumption, proving an an equation like
(3) requires two elements of Ĝ.

In [6], Belenkiy et al. showed that Groth-Sahai proofs

are perfectly randomizable. Given commitments {~CXi}ni=1

and a NIWI proof ~πPPE that committed {X}ni=1 satisfy (3),
anyone can publicly compute re-randomized commitments
{~CX ′i }

n
i=1 and a re-randomized proof ~π′PPE of the same state-

ment. Moreover, { ~CX ′i }
n
i=1 and ~π′PPE are distributed as

freshly generated commitments and proof.


