
NIST Threshold Cryptography Workshop 2019, Gaithersburg, MD, USA, March 11-12, 2019.

Fully Distributed Non-Interactive Adaptively-Secure Threshold
Signature Scheme with Short Shares: Efficiency Considerations and

Implementation?

Benoît Libert1,2, Marc Joye3, Moti Yung4, and Fabrice Mouhartem2

1 CNRS, Laboratoire d’Informatique du Parallélisme, France
2 Ecole Normale Supérieure de Lyon, France

benoit.libert@ens-lyon.fr, fabrice.mouhartem@ens-lyon.fr
3 OneSpan, Belgium

marc.joye@onespan.com
4 Google Inc. and Columbia University, USA

moti@cs.columbia.edu

Abstract. Threshold cryptography enhances the availability and the security of cryptographic schemes
by dividing private keys into n shares handed out to distinct servers. In threshold signature schemes, a
set of at least t+ 1 ≤ n servers is needed to produce a valid digital signature. Availability is assured by
the fact that any subset of t + 1 servers can produce a signature when authorized. At the same time,
the scheme should remain robust and unforgeable against up to t corrupted servers. Originally, most
practical threshold signatures have a number of limitations: They have been analyzed in a static corruption
model (where the set of corrupted servers is fixed at the very beginning of the attack); they require
interaction; they assume a trusted dealer in the key generation phase (so that the system is not fully
distributed); or they suffer from certain overheads in terms of storage (large share sizes). We present a
practical fully distributed non-interactive scheme—where the servers can compute their partial signatures
without communication with other servers—with adaptive security (i.e., the adversary corrupts servers
dynamically based on its full view of the history of the system). Our scheme is very efficient in terms of
computation, communication, and scalable storage (with private key shares of size O(1), where certain
solutions incur O(n) storage costs at each server). Unlike other adaptively secure schemes, our scheme
is erasure-free. Of particular interest is the fact that Pedersen’s traditional distributed key generation
(DKG) protocol can be safely employed in the initial key generation phase when the system is set up
although it is well-known not to ensure uniformly distributed public keys. An advantage of this is that
this protocol only takes one round in the absence of faulty player.

Keywords: Threshold signatures, fully distributed schemes, non-interactivity, adaptive security, efficiency,
availability, fault tolerance, distributed key generation, erasure-freeness.

1 Introduction

Threshold cryptography [31,32,17,30] is a paradigm where cryptographic keys are divided into n > 1
shares to be stored by distinct servers, which increases the system’s availability and resilience to
failures. In (t, n)-threshold cryptosystems, private key operations require the cooperation of at least
t+ 1 out of n servers (any subset is good). By doing so, the system remains secure against adversaries
that break into up to t servers. Threshold signatures enhance the security of highly sensitive private
keys, like those of certification authorities (e.g., [20]). They can also serve as tools for distributed
storage systems [51,68]. RSA and Elgamal-type constructions have been at the core of many threshold
protocols the last two decades (see, e.g., [30,41,42,47]). A fully distributed public-key system is one
where the public (and the distributed private) key are jointly generated by the same servers which end
up holding the private key’s shares (e.g., via a threshold secret sharing [70]). Efficient distributed key
generation (DKG) protocols were put forth for both RSA [14,36,35,28] and discrete-logarithm-based
systems [65,43,37,18,45].

? This paper presents results initially published at PODC 2014.

Non-Interactive Threshold Signatures. For a long time, RSA-based threshold signatures
have been the only solutions to enable non-interactive distributed signature generation. By “non-
interactive”, we mean that each server can compute its own partial signature without any online
conversation with other servers: each server should send a single message to an entity, called combiner,
which gathers the signature shares so as to obtain a full signature. Unlike threshold versions of
Schnorr and DSA signatures [44,41], threshold RSA signatures are well-suited to non-interactive
signing protocols as they are deterministic. Hence, they do not require the servers to jointly generate
a randomized signature component in a first round before starting a second round. Practical robust
non-interactive threshold signatures were described by Shoup [71] under the RSA assumption and by
Katz and Yung [52] assuming the hardness of factoring. Boldyreva [12] showed a threshold version
of Boneh-Lynn-Shacham signatures [16], which provided an alternative non-interactive scheme with
robustness and short signatures. The latter construction [12] was subsequently generalized by Wee
[72]. These solutions are only known to resist static attacks, where the set of corrupted servers is
chosen by the adversary at the very beginning of the attack, before even seeing the public key.

Adaptive Corruptions. More realistically than the static model, the adaptive corruption model
allows adversaries to choose whom to corrupt at any time, based on their entire view so far. Adaptive
adversaries are known to be strictly (see, e.g., [27]) stronger. The first adaptively secure threshold
signatures were independently described in 1999 by Canetti et al. [18] and by Frankel et al. [37,38].
These constructions rely on a technique, called “single inconsistent player” (SIP), which inherently
requires interaction. The SIP technique basically consists in converting a t-out-of-n secret sharing
into an t-out-of-t secret sharing in such a way that, in the latter case, there is only one server whose
internal state cannot be consistently revealed to the adversary. Since this player is chosen at random
by the simulator among the n severs, it is only corrupted with probability less than 1/2 and, upon this
undesirable event, the simulator can simply rewind the adversary back to one of its previous states.
After this backtracking operation, the simulator uses different random coins to simulate the view
of the adversary, hoping that the inconsistent player will not be corrupted again (and the expected
number of rewinding-s is bounded by 2).

Jarecki and Lysyanskaya [49] extended the SIP technique to eliminate the need for servers to
reliably erase intermediate computation results. However, their adaptively secure version of the
Canetti-Goldwasser threshold cryptosystem [19] requires a substantial amount of interaction at each
private key operation. The same holds for the adaptively secure threshold signatures of Lysyanskaya
and Peikert [60] and the universally composable protocols of Abe and Fehr [1].

In 2006, Almansa, Damgård and Nielsen [4] showed a variant of Rabin’s threshold RSA signa-
tures [67] and proved them adaptively secure using the SIP technique and ideas from [37,38]. Similar
techniques were used in [73] to construct adaptively secure threshold Waters signatures [74]. While
the SIP technique provides adaptively secure threshold signatures based on RSA or the Diffie-Hellman
assumption, these fall short of minimizing the amount of interaction. The constructions of [37,38]
proceed by turning a (t, n) polynomial secret sharing into a (t, t) additive secret sharing by first
selecting a pool of at least t participants. However, if only one of these fails to provide a valid
contribution to the signing process, the whole protocol must be restarted from scratch. The protocol
of Almansa et al. [4] is slightly different in that, like [67], it proceeds by sharing an RSA private key
in an additive (n, n) fashion (i.e., the private RSA exponent d is split into shares d1, . . . , dn such that
d =

∑n
i=1 di). In turn, each additive share di is shared in a (t, n) fashion using a polynomial verifiable

secret sharing and each share di,j of di is distributed to another server j. This is done in such a way
that, if one participant fails to provide a valid RSA signature share H(M)di , the missing signature
share can be re-constructed by running the reconstruction algorithm of the verifiable secret sharing
scheme that was used to share di. The first drawback of this approach is that it is only non-interactive
when all players are honest as a second round is needed to reconstruct missing multiplicative signature
shares H(M)di . Another disadvantage is that players have to store Θ(n) values, where n is the number

2

of servers, as each player has to store a polynomial share of other players’ additive share. Ideally, we
would like a solution where each player only stores O(1) elements, regardless of the number of players.

Libert and Yung [58,59] gave several constructions of adaptively secure threshold encryption
schemes with chosen-ciphertext security. They also suggested an adaptively secure and non-interactive
threshold variant [58] of a signature scheme due to Lewko and Waters [53]. The use of bilinear maps
in composite order groups makes the scheme of [58] expensive when it comes to verifying signatures:
as discussed by Freeman [40], computing a bilinear map in composite order groups is at least 50
times slower than evaluating the same bilinear map in prime order groups at the 80-bit security level
(things can only get worse at higher security levels). The techniques of Lewko [54] can be used to
adapt the construction of [58] to the setting of prime-order groups. In the resulting construction,
each signature consists of 6 group elements. The use of asymmetric bilinear maps (see [21]) allows
reducing the signature size to 4 group elements. Unfortunately, the techniques of [54,21] assume a
trusted dealer and, if implemented in a distributed manner, their key generation phase is likely to be
communication-expensive (resorting to generic multiparty secure computations). In particular, they
seem hardly compatible with a round-optimal DKG protocol. Finally, the solutions of [58] require
reliable erasures due to the use of the dual system encryption technique [75,53] and the existence of
several distributions of partial signatures.

Our Contributions. We present a result published in [55,56], which considers the design of
a practical threshold signature scheme which is as efficient as the centralized schemes obtained
from [58,21] and features the following properties:
– It is fully distributed in that the public key is jointly generated by all players. No trusted dealer

is required in the key generation phase.
– It is non-interactive in the sense that no communication is required among servers beyond the

setup phase. Each server can locally compute its contribution to the signature generation process
without talking to other servers and sends only one message to the combiner.

– From a security point of view, it is robust against malicious adversaries and remains secure in the
adaptive corruption setting, where the adversary can decide whom to corrupt based on its entire
view so far.

– It does not rely on the hard-to-control use of reliable erasures. Whenever the adversary corrupts a
player, we assume that it learns the entire history of that player.

– Efficiency-wise, it retains private key shares of size O(1), no matter how many players are involved
in the protocol. In particular, servers do not have to share a backup share of other servers’ shares.

At the same time, the distributed key generation phase should be as communication-efficient as
possible. Our goal is to have a single communication round when the players follow the protocol. To
the best of our knowledge, no existing solution combines all the aforementioned highly constraining
properties. We thus provide the first candidates.

Our constructions are derived from linearly homomorphic structure-preserving signatures (LHSPS).
Structure-preserving signatures (SPS) [2,3] are signature schemes where messages and public keys live
in an abelian group over which a bilinear map is efficiently computable. Libert et al. [57] considered
SPS schemes with additive homomorphic properties: given signatures on linearly independent vectors
of group elements, anyone can publicly compute a signature on any linear combination of these
vectors. In order to sign a message M ∈ {0, 1}∗ in a distributed manner, our idea is to hash M onto
a vector of group elements which is signed using the LHSPS scheme of [57]. In the (programmable)
random oracle model, we prove in [55,56] that the resulting system is a secure digital signature
even if the underlying LHSPS scheme satisfies a weak security definition. Since the LHSPS signing
algorithm is deterministic and further presents certain homomorphic properties over the key space,
the resulting signature is also amenable for non-interactive distributed signature generation. In the
threshold setting, we take advantage of specific properties of the LHSPS scheme of [57] to prove that
the scheme provides security against adaptive corruptions in the absence of secure erasures.

3

More surprisingly, we prove that the scheme remains adaptively secure if the public key is generated
using Pedersen’s DKG protocol [65]. The latter basically consists in having all players verifiably share
a random value using Feldman’s verifiable secret sharing (VSS) [34] before computing the shared
secret as the sum of all well-behaved players’ contributions. While very efficient (as only one round is
needed in the absence of faulty players), this protocol is known [43] not to guarantee the uniformity of
the resulting public key. Indeed, even a static adversary can bias the distribution by corrupting only
two players. Nonetheless, the adversary does not have much control on the distribution of the public
key and Pedersen’s protocol can still be safely used in some applications, as observed in [44,45,23].
However, these safe uses of Pedersen’s protocol were in the static corruption setting and our scheme
turns out to be its first application in an adaptive corruption model. To our knowledge, it is also
the first adaptively secure threshold signature where the DKG phase takes only one round when all
players follow the specification.

In the journal version of the paper [56], we describe a variant supporting signature aggregation:
as suggested by Boneh et al. [15], a set of n signatures for distinct public keys PK1, . . . , PKs on
messages M1, . . . ,Ms can be aggregated into a single signature σ which convinces a verifier that, for
each i, Mi was signing by the private key underlying PKi. In the threshold setting, this property
allows for de-centralized certification authorities while enabling the compression of certification chains.

2 Background

2.1 Definitions for Threshold Signatures

A non-interactive (t, n)-threshold signature scheme consists of a tuple Σ = (Dist-KeyGen,Share-Sign,
Share-Verify,Verify,Combine) of efficient algorithms or protocols such that:

Dist-KeyGen(params, λ, t, n) This is an interactive protocol involving n players P1, . . . , Pn, which all
take as input common public parameters params, a security parameter λ ∈ N as well as a pair of
integers t, n ∈ poly(λ) such that 1 ≤ t ≤ n. The outcome of the protocol is the generation of a
public key PK, a vector of private key shares SK = (SK1, . . . , SKn) where Pi only obtains SKi

for each i ∈ {1, . . . , n}, and a public vector of verification keys VK = (V K1, . . . , V Kn).
Share-Sign(SKi,M) is a possibly randomized algorithm that takes in a message M and a private key

share SKi. It outputs a signature share σi.
Share-Verify(PK,VK,M, (i, σi)) is a deterministic algorithm that inputs a message M , the public

key PK, the verification key VK and a pair (i, σi) consisting of an index i and signature share σi.
It outputs 1 or 0 depending on whether σi is deemed as a valid signature share or not.

Combine(PK,VK,M, {(i, σi)}i∈S) takes as input a public key PK, a message M and a subset
S ⊂ {1, . . . , n} of size |S| = t + 1 with pairs {(i, σi)}i∈S such that i ∈ {1, . . . , n} and σi is a
signature share. This algorithm outputs either a full signature σ or ⊥ if {(i, σi)}i∈S contains
ill-formed partial signatures.

Verify(PK,M, σ) is a deterministic algorithm that takes as input a message M , the public key PK
and a signature σ. It outputs 1 or 0 depending on whether σ is deemed valid share or not.

We shall use the same communication model as in, e.g., [43,44,45], which is partially synchronous.
Namely, communications proceed in synchronized rounds and sent messages are always received within
some time bound in the same round. All players have access to a public broadcast channel, which
the adversary can use as a sender and a receiver. However, the adversary cannot modify messages
sent over this channel, nor prevent their delivery. In addition, we assume private and authenticated
channels between all pairs of players.

In the adaptive corruption setting, the security of non-interactive threshold signatures can be
defined as follows.

4

Definition 1. A non-interactive threshold signature scheme Σ is adaptively secure against chosen-
message attacks if no PPT adversary A has non-negligible advantage in the game hereunder. At
any time, we denote by C ⊂ {1, . . . , n} and G := {1, . . . , n} \ C the dynamically evolving subsets of
corrupted and honest players, respectively. Initially, we set C = ∅.

1. The game begins with an execution of Dist-KeyGen(params, λ, t,N) during which the challenger
plays the role of honest players Pi and the adversary A is allowed to corrupt players at any
time. When A chooses to corrupt a player Pi, the challenger sets G = G \ {i}, C = C ∪ {i} and
returns the internal state of Pi. Moreover, A is allowed to act on behalf of Pi from this point
forward. The protocol ends with the generation of a public key PK, a vector of private key shares
SK = (SK1, . . . , SKn) and the corresponding verification keys VK = (V K1, . . . , V Kn). At the
end of this phase, the public key PK and {SKi}i∈C are available to the adversary A.

2. On polynomially many occasions, A adaptively interleaves two kinds of queries.
– Corruption query: At any time, A can choose to corrupt a server. To this end, A chooses
i ∈ {1, . . . , n} and the challenge returns SKi before setting G = G \ {i} and C = C ∪ {i}.

– Signing query: For any i ∈ G, A can also submit a pair (i,M) and ask for a signature share
on an arbitrary message M on behalf of player Pi. The challenger responds by computing
σi ← Share-Sign(SKi,M) and returning σi to A.

3. A outputs a message M? and a signature σ?. We define V = C ∪ S, where S ⊂ {1, . . . , n} is the
subset of players for which A made a signing query of the form (i,M?). The adversary wins if the
following conditions hold: (i) |V| < t+ 1; (ii) Verify(PK,M?, σ?) = 1.

A’s advantage is defined as its probability of success, taken over all coin tosses.

Since we focus on non-interactive schemes, Definition 1 allows the adversary to individually query
each partial signing oracle whereas usual definitions only provide the adversary with an oracle that
runs the distributed signing protocol on behalf of all honest players. We also remark that Definition 1
allows the adversary to obtain some partial signatures on the forgery messageM? as long as its output
remains a non-trivial forgery. In a weaker (but still compelling) definition, partial signing queries for
M? would be completely disallowed. In the following, we will stick to the stronger definition.

2.2 Hardness Assumptions

We first recall the definition of the Decision Diffie-Hellman problem.

Definition 2. In a cyclic group G of prime order p, the Decision Diffie-Hellman Problem (DDH) in
G, is to distinguish the distributions (g, ga, gb, gab) and (g, ga, gb, gc), with a, b, c R← Zp. The Decision
Diffie-Hellman assumption is the intractability of DDH for any PPT distinguisher.

We use bilinear maps e : G× Ĝ→ GT over groups of prime order p. We will work in asymmetric
pairings, where we have G 6= Ĝ so as to allow the DDH assumption to hold in G (see, e.g., [69]).
In certain asymmetric pairing configurations, DDH is even believed to hold in both G and Ĝ. This
assumption is called Symmetric eXternal Diffie-Hellman (SXDH) assumption and it implies that no
isomorphism between Ĝ and G be efficiently computable.

For convenience, we also use the following problem in asymmetric pairing configurations.

Definition 3 ([3]). The Double Pairing problem (DP) in (G, Ĝ,GT) is, given (ĝz, ĝr) ∈R Ĝ2, to
find a non-trivial (z, r) ∈ G2\{(1G, 1G)} that satisfies e(z, ĝz) · e(r, ĝr) = 1GT

. The Double Pairing
assumption asserts that the DP problem is infeasible for any PPT algorithm.

The DP problem is known [3] to be at least as hard as DDH in Ĝ. Given (ĝz, ĝr, ĝzθ1 , ĝr
θ2), a

solution (z, r) allows deciding whether θ1 = θ2 or not by testing if e(z, ĝzθ1) · e(r, ĝrθ2) = 1GT
.

5

2.3 Linearly Homomorphic Structure-Preserving Signatures

Structure-preserving signatures [2,3] are signature schemes that allow signing elements of an abelian
group while preserving their algebraic structure, without hashing them first. In [57], Libert et al.
described structure-preserving signatures with linearly homomorphic properties. Given signatures
on several vectors M1, . . . ,Mn of group elements, anyone can publicly derive a signature on any
linear combination of M1, . . . ,Mn. They suggested the following scheme, which is a one-time LHSPS
(namely, it only allows signing one linear subspace) based on the DP assumption.

Keygen(λ,N) Given a security parameter λ and the dimension N ∈ N of the subspace to be signed,
choose bilinear group (G, Ĝ,GT) of prime order p. Then, conduct the following steps.
1. Choose ĝz, ĝr

R← Ĝ.
2. For k = 1 to N , pick χk, γk

R← Zp and compute ĝk = ĝz
χk ĝr

γk .
The private key is sk = {χk, γk}Ni=1 while the public key consists of pk =

(
ĝz, ĝr, {ĝk}Nk=1

)
.

Sign(sk, (M1, . . . ,MN)) To sign a vector (M1, . . . ,MN) ∈ GN using sk = {χk, γk}Nk=1, compute and
output σ = (z, r) ∈ G2, where z =

∏N
k=1M

−χk
k , r =

∏N
k=1M

−γk
k .

Sign-Derive(pk, {(ωi, σ(i))}`i=1) Given pk and ` tuples (ωi, σ(i)), parse σ(i) as σ(i) = (zi, ri) ∈ G2 for
i = 1 to `. Then, compute and return σ = (z, r), where z =

∏`
i=1 z

ωi
i and r =

∏`
i=1 r

ωi
i .

Verify(pk, σ, (M1, . . . ,MN)) Given σ = (z, r) ∈ G2 and a vector (M1, . . . ,MN), return 1 if and only
if (M1, . . . ,MN) 6= (1G, . . . , 1G) and (z, r) satisfies 1GT

= e(z, ĝz) · e(r, ĝr) ·
∏N
k=1 e(Mk, ĝk).

A useful property of the scheme is that, if the DP assumption holds, it is computationally hard to
come up with two distinct signatures on the same vector, even if the private key is available.

3 A Practical Adaptively Secure Non-Interactive Threshold Signature

The construction notably relies on the observation that, as shown in the full version of this paper [56],
any one-time linearly homomorphic SPS can be turned into a fully secure ordinary signature by
introducing a random oracle. The public key is simply that of a linearly homomorphic SPS for vectors
of dimension n > 1. Messages are signed by hashing them to a vector H ∈ Gn and generating a
one-time homomorphic signature on H . The security reduction programs the random oracle in such a
way that all signed messages are hashed into a proper subspace of Gn whereas, with some probability,
the adversary forges a signature on a message which is hashed outside this subspace. Hence, a forgery
for this message translates into an attack against the underlying linearly homomorphic SPS.

In the threshold setting, our system can be seen as an adaptively secure variant of Boldyreva’s
threshold signature [12], which builds on the short signatures of Boneh, Lynn, and Shacham [16].

The DKG phase uses Pedersen’s protocol [65] (or, more precisely, a variant with two generators).
Each player verifiably shares a random secret using Pedersen’s verifiable secret sharing [66]—where
verification is enabled by having all parties broadcast commitments to their secret polynomials—and
the final secret key is obtained by summing up the shares of non-disqualified players. When all parties
follow the protocol, a single communication round is needed. Moreover, we do not need to rely on
zero-knowledge proofs or reliable erasures at any time.

In order to sign a message using his private key share, each player first hashes the message M
to obtain a vector (H1, H2) ∈ G2 of two group elements, which can be signed using the linearly
homomorphic structure-preserving signature of Section 2.3. We actually build on the observation
that any one-time linearly homomorphic SPS implies a fully secure digital signature in the random
oracle model. In the threshold setting, we take advantage of two specific properties in the underlying
homomorphic signature. First, it is also key homomorphic5 and thus amenable for non-interactively

5 Namely, the private key space forms an additive group such that, for any message M , given any two signatures
σ1 ← Sign(sk1,M) and σ2 ← Sign(sk2,M), anyone can compute a valid signature on M for the private key sk1 + sk2.

6

distributing the signing process. Second, in the security proof of [57], the reduction always knows the
private key, which allows consistently answering adaptive corruption queries.

3.1 Description

In the description below, we assume that all players agree on public parameters params consisting
of asymmetric bilinear groups (G, Ĝ,GT) of prime order p with generators ĝz, ĝr ∈R Ĝ and a hash
function H : {0, 1}∗ → G2 that ranges over G×G. This hash function is modeled as a random oracle
in the security analysis. While no party should know logĝz

(ĝr), we do not need an extra round to
generate ĝr in a distributed manner as it can simply be derived from a random oracle.

Dist-KeyGen(params, λ, t, n) Given params = {(G, Ĝ,GT), ĝz, ĝr, H}, a security parameter λ and
integers t, n ∈ N such that n ≥ 2t+ 1, each player Pi conducts the following steps.

1. Each player Pi shares two random pairs {(aik0, bik0)}2k=1. To this end, he does the following:
(a) For each k ∈ {1, 2}, choose random polynomials Aik[X] = aik0 + aik1X + · · · + aiktX

t,
Bik[X] = bik0 + bik1X + · · ·+ biktX

t ∈ Zp[X] of degree t and broadcast

Ŵik` = ĝz
aik` ĝr

bik` ∀` ∈ {0, . . . , t}

(b) For j = 1 to n, send {(Aik(j), Bik(j))}2k=1 to Pj .
2. For each set of shares {(Ajk(i), Bjk(i))}2k=1 received from another player Pj , Pi verifies that

ĝ
Ajk(i)
z ĝ

Bjk(i)
r =

t∏
`=0

Ŵ i`

jk` for k = 1, 2 . (1)

If these equalities do not both hold, Pi broadcasts a complaint against the faulty sender Pj .
3. Any player against who was issued at least t complaints against it is immediately disqualified.

Each player Pi who received a complaint from another player Pj responds by broadcasting
the correct shares {(Aik(j), Bik(j))}2k=1. If any of these new shares does not satisfy (1), Pi is
disqualified. Let Q ⊂ {1, . . . , n} be the set of non-disqualified players at the end of step 3.

4. The public key is obtained as PK = {ĝk}2k=1, where ĝk =
∏
i∈Q Ŵik0 = ĝ

∑
i∈Q aik0

z ĝ

∑
i∈Q bik0

r .
Each Pi locally defines his private key share

SKi = {(Ak(i), Bk(i))}2k=1 =
{(∑

j∈QAjk(i),
∑
j∈QBjk(i)

)}2

k=1

and anyone can publicly compute his verification key V Ki =
(
V̂1,i, V̂2,i

)
as

V Ki =
(
ĝz
A1(i)ĝr

B1(i), ĝz
A2(i)ĝr

B2(i)) =
(∏

j∈Q
∏t
`=0 Ŵ

i`
j1`,

∏
j∈Q

∏t
`=0 Ŵ

i`
j2`

)
.

For any disqualified player i ∈ {1, . . . , n} \ Q, the i-th private key share is implicitly set as
SKi = {(0, 0)}2k=1 and the corresponding verification key is V Ki = (1Ĝ, 1Ĝ).

This completes the generation of the private key shares SK = (SK1, . . . , SKn), the vector of
verification keys VK = (V K1, . . . , V Kn) and the public key, which consists of

PK =
(
params, (ĝ1, ĝ2)

)
.

When the protocol ends, the private key shares {Ak(i)}2k=1 and {Bk(i)}2k=1 lie on t-degree polyno-
mials Ak[X] =

∑
j∈QAjk[X] and Bk[X] =

∑
j∈QBjk[X]. Each player also holds an additive share

{(aik0, bik0)}2k=1 of the secret key {(Ak(0), Bk(0)) = (
∑
i∈Q aik0,

∑
i∈Q bik0)}2k=1 but these shares will

not be used in the scheme.

7

Share-Sign(i, SKi,M) To generate a partial signature on a message M ∈ {0, 1}∗ using his private key
share SKi = {(Ak(i), Bk(i))}2k=1, Pi first computes the hash value (H1, H2) = H(M) ∈ G × G
and generates the partial signature σi = (zi, ri) ∈ G2 as

zi =
2∏

k=1
H
−Ak(i)
k ri =

2∏
k=1

H
−Bk(i)
k .

Share-Verify
(
PK,VK,M, (i, σi)

)
Given the partial signature σi = (zi, ri) ∈ G2 and the verification

key V Ki =
(
V̂1,i, V̂2,i

)
, the algorithm first computes (H1, H2) = H(M) ∈ G2. It returns 1 if

e(zi, ĝz) · e(ri, ĝr) ·
∏2
k=1 e(Hk, V̂k,i) = 1GT

and 0 otherwise.
Combine(PK,VK,M, {(i, σi)}i∈S) Given a (t+1)-set with valid shares {(i, σi)}i∈S , parse the signature

share σi as (zi, ri) ∈ G2 for each i ∈ S. Then, compute (z, r) =
(∏

i∈S z
∆i,S(0)
i ,

∏
i∈S r

∆i,S(0)
i

)
by

Lagrange interpolation in the exponent. Return the pair (z, r) ∈ G2.
Verify(PK,M, σ) Given a purported signature σ = (z, r) ∈ G2, compute (H1, H2) = H(M) ∈ G×G

and return 1 if and only if the following equality holds:

e(z, ĝz) · e(r, ĝr) · e(H1, ĝ1) · e(H2, ĝ2) = 1GT
.

If the scheme is instantiated using Barreto-Naehrig curves [7] at the 112-bit security level,6 each
signature consists of 512 bits. For the same security level, RSA-based threshold signatures like [71,4]
require 2692 bits. The scheme is also very efficient from a computational standpoint. Each server
only has to compute two multi-exponentiations with two base elements and two “hash-on-curve”
operations. The verifier has to compute a product of four pairings.

At the end of the key generation phase, each player only needs to store a constant-size private
key share SKi = {(Ak(i), Bk(i))}2k=1—whereas solutions like [4] incur the storage of O(n) elements
at each player—and can erase all intermediate values, including the polynomials Aik[X] and Bik[X].
However, we insist that the security analysis does not require reliable erasures. When a player is
corrupted, we assume that the adversary learns the entire history of this player.

3.2 Security

Although the public key is not guaranteed to be uniform due to the use of Pedersen’s DKG protocol,
the key homomorphic property allows the reduction to turn the adversary’s forgery into a valid
signature with respect to some uniformly random public key obtained by multiplying honest users’
contributions to the public key. This is sufficient for solving a given Double Pairing instance.

The security proof proceeds with a sequence of games which can be outlined as follows. The first
game is the real game where the challenger assumes the role of all honest players in the distributed
key generation phase. Since it controls a majority of players, the challenger knows the polynomials
{Ajk[X], Bjk[X]}j∈Q,k∈{1,2} and the private key shares {SKj}j∈Q of all non-disqualified players—
either because it obtained at least t+ 1 polynomial shares {(Ajk(i), Bjk(i))}i∈G,k∈{1,2} for each j ∈ Q
or because it chose the polynomials itself—at the end of the Dist-KeyGen protocol.

In subsequent games, the challenger applies Coron’s proof technique for Full Domain Hash
signatures [22]. At each random oracle query H(M), it flips a coin ϑM ∈ {0, 1} that takes the value 0
with probability qs/(qs + 1) and the value 1 with probability 1/(qs + 1), where qs is the number of
signing queries. If ϑM = 1, the challenger defines H(M) to be a random vector of G2. If ϑM = 0, the
message M is hashed to a subspace of dimension 1. We prove that, although H does no longer behave
as an actual random oracle, this change should not affect the adversary’s view if the DDH assumption
holds in G. Coron’s analysis [22] shows that, with probability Ω(1/qs), the following conditions

6 Given the recent attacks [50] on Barreto-Naehrig curves, and more generally curves with a smooth extension degree,
the security of BN curves has been reevaluated [6]. Which explains this non-standard security level.

8

are fulfilled: (i) The adversary only obtains partial signatures on messages M1, . . . ,Mqs that are
hashed in a one-dimensional subspace; (ii) The adversary’s forgery involves a message M? such that
(H?

1 , H
?
2) = H(M?) is linearly independent of the vectors {(H1,i, H2,i) = H(Mi)}qs

i=1. Condition (i)
ensures that the adversary obtains little information about the private key shares {SKi}i∈G and the
additive shares {aik0, bik0}i∈G,k∈{1,2} of honest players. Hence, if the challenger computes the additive
contribution of honest players to a signature on the vector (H?

1 , H
?
2) = H(M?), this contribution

is completely unpredictable by the adversary due to condition (ii). With overwhelming probability,
this contribution does not coincide with the one that can be extracted (using the additive shares
{ajk0, bjk0}j∈Q\G , k ∈ {1, 2} that the reduction knows from the key generation phase) from the
adversary’s forgery (z?, r?) using the key homomorphic property of the scheme. The challenger thus
obtains two distinct linearly homomorphic signatures on the vector (H?

1 , H
?
2), which allows solving an

instance of the Double Pairing problem.

Theorem 1. The scheme provides adaptive security under the SXDH assumption in the random
oracle model. Namely, for any PPT adversary A, there exist DDH distinguishers B1 and B2 with
comparable running time in the groups G and Ĝ, respectively. (The proof is given in Appendix B.)

We remark that the proof of Theorem 1 goes through if, during the key generation phase, each
player Pi additionally publicizes (Zi0, Ri0) =

(
g−ai10h−ai20 , g−bi10h−bi20

)
, for public g, h ∈ G, which

satisfies e(Zi0, ĝz) · e(Ri0, ĝr) · e(h, Ŵi10) · e(g, Ŵi20) = 1GT
and thus forms a LHSPS on (g, h) for

the public key {Ŵik0}2k=1. Indeed, if we consider the information that each player initially reveals
about its local additive shares (ai10, ai20, bi10, bi20) ∈ Z4

p, it amounts to the discrete logarithms of
(Ŵi10, Ŵi20, Zi0). The only extra information revealed by Zi0 is thus ai10 +ω · ai20, where ω = logg(h),
which leaves ai20 undetermined. While an unbounded adversary can compute the sum a1,G + ω · a2,G
in Game 2, it still has no information about a2,G =

∑
j∈G aj20. In the full version of this work [56], we

use this observation to show a simple modification of the scheme that supports signature aggregation.

3.3 Adding Proactive Security

The scheme readily extends to provide proactive security [64,47,39] against mobile adversaries that
can potentially corrupt all the players at some point as long as it never controls more than t players
at any time. By having the players refreshing all shares (without changing the secret) at discrete
time intervals, the scheme remains secure against an adversary corrupting up to t players during the
same period. This is achieved by having all players run a new instance of Pedersen’s DKG protocol
where the shared secret is {(0, 0)}2k=1 and locally add the resulting shares to their local shares before
updating {V Ki}ni=1 accordingly.

The techniques of [48, Section 4] can also be applied to detect parties holding a corrupted share
(due to a crash during an update phase or an adversarial behavior) and restore the correct share.

3.4 Implementation Results

Table 1. Implementation results for a set of 51 users with absolute majority to allow recombinations.

Algorithm Dist-KeyGen Share-Sign Combine Verify

Timings (ms) 202763 112 493 13

A proof-of-concept implementation is available at URL https://gitlab.inria.fr/fmouhart/
threshold-signature. It is written in C++ using the Relic library [5] to manipulate pairing-friendly
groups but is not fully optimized (especially the Dist-KeyGen protocol). The timings listed in Table 1

9

https://gitlab.inria.fr/fmouhart/threshold-signature
https://gitlab.inria.fr/fmouhart/threshold-signature

were obtained on a Intel CoreTM i7-5600U running at 2.60GHz on a single core. The Combine
algorithm includes the Share-Verify of the signature for each user who has not been disqualified.
This implementation gives a rough estimate (order of magnitude) of the performance this threshold
signature scheme can achieve. The Dist-KeyGen and the Share-Sign algorithms are evaluated for the
overall process done in a sequential manner, not for an individual user.

References

1. M. Abe, S. Fehr. Adaptively secure Feldman VSS and applications to universally-composable threshold cryptography.
In Crypto 2004, LNCS 3152, pp. 317–334, 2004. doi:10.1007/978-3-540-28628-8_20

2. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, M. Ohkubo. Structure-preserving signatures and commitments
to group elements. In Crypto 2010, LNCS 6223, pp. 209–236, 2010. doi:10.1007/978-3-642-14623-7_12

3. M. Abe, K. Haralambiev, M. Ohkubo. Signing on elements in bilinear groups for modular protocol design. In
Cryptology ePrint Archive: Report 2010/133, 2010. http://eprint.iacr.org/2010/133

4. J. Almansa, I. Damgård, J.-B. Nielsen. Simplified threshold RSA with adaptive and proactive security. In Eurocrypt
2006, LNCS 4004, pp. 593–611, 2006. doi:10.1007/11761679_35

5. D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography. https://github.com/
relic-toolkit/relic.

6. R. Barbulescu and S. Duquesne. Updating key size estimations for pairings. Journal of Cryptology, to appear.
doi:10.1007/s00145-018-9280-5

7. P. Barreto, M. Naehrig. Pairing-friendly elliptic curves of prime order. In SAC 2005, LNCS 3897, pp. 319–331, 2005.
doi:10.1007/11693383_22

8. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, H. Shacham. Randomizable proofs and
delegatable anonymous credentials. In Crypto 2009, LNCS 5677, pp. 108–125, 2009. doi:10.1007/978-3-642-03356-8_7

9. M. Bellare, C. Namprempre, G. Neven. Unrestricted aggregate signatures. In ICALP 2007, LNCS 4596, pp. 411–422,
2007. doi:10.1007/978-3-540-73420-8_37

10. M. Bellare, T. Ristenpart. Simulation without the artificial abort: Simplified proof and improved concrete security
for Waters’ IBE scheme. In Eurocrypt 2009, LNCS 5479, pp. 407–424, 2009. doi:10.1007/978-3-642-01001-9_24

11. M. Bellare, P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In ACM CCS ’93,
pp. 62–73, 1993. doi:10.1145/168588.168596

12. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the Gap-Diffie-Hellman group
signature scheme. In PKC 2003, LNCS 2567, pp. 31–46, 2003. doi:10.1007/3-540-36288-6_3

13. D. Boneh, X. Boyen, H. Shacham. Short group signatures. In Crypto 2004, LNCS 3152, pp. 41–55, 2004.
doi:10.1007/978-3-540-28628-8_3

14. D. Boneh, M. Franklin. Efficient generation of shared RSA keys. In Crypto ’97, LNCS 1924, pp. 425–439, 1997.
doi:10.1007/BFb0052253

15. D. Boneh, C. Gentry, B. Lynn, H. Shacham. Aggregate and verifiably encrypted signatures from bilinear maps. In
Eurocrypt 2003, LNCS 2656, pp. 416–432, 2003. doi:10.1007/3-540-39200-9_26

16. D. Boneh, B. Lynn, H. Shacham. Short signatures from the Weil pairing. Journal of Cryptology 17(4):297–319, 2004.
Earlier version in Asiacrypt’01, LNCS 2248, pp. 514–532, 2001. doi:10.1007/s00145-004-0314-9

17. C. Boyd. Digital multisignatures. In Cryptography and Coding (H.J. Beker and F.C. Piper, Eds.), Oxford University
Press, pp. 241–246, 1989.

18. R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin. Adaptive security for threshold cryptosystems. In
Crypto ’99, LNCS 1666, pp. 98–115, 1999. doi:10.1007/3-540-48405-1_7

19. R. Canetti, S. Goldwasser. An efficient threshold public key cryptosystem secure against adaptive chosen ciphertext
attack. In Eurocrypt ’99, LNCS 1592, pp. 90–106, 1999. doi:10.1007/3-540-48910-X_7

20. Distributed CA for Visa-MC SET Infrastructure announcement, 1997. http://www.geocities.ws/rayvaneng/
w0597_09.htm

21. J. Chen, H.-W. Lim, S. Ling, H. Wang, H. Wee. Shorter IBE and signatures via asymmetric pairings. In Pairing
2012, LNCS 7708, pp. 122–140, 2012. doi:10.1007/978-3-642-36334-4_8

22. J.-S. Coron. On the exact security of full domain hash. In Crypto 2000, LNCS 1880, pp. 229–235, 2000. doi:10.1007/3-
540-44598-6_14

23. V. Cortier, D. Galindo, S. Glondu, M. Izabachène. Distributed ElGamal à la Pedersen: Application to Helios. In
WPES 2013, pp. 131–142, 2013. doi:10.1145/2517840.2517852

24. R. Cramer, M. Franklin, B. Schoenmakers, M. Yung. Multi-autority secret-ballot elections with linear work. In
Eurocrypt ’96, LNCS 1070, pp. 72–83, 1996. doi:10.1007/3-540-68339-9_7

25. R. Cramer, R. Gennaro, B. Schoenmakers. A secure and optimally efficient multi-authority election scheme. In
Eurocrypt ’97, LNCS 1233, pp. 103–118, 1997. doi:10.1007/3-540-69053-0_9

26. R. Cramer, I. Damgård, J.-B. Nielsen. Multiparty computation from threshold homomorphic encryption. In Eurocrypt
2001, LNCS 2045, pp. 280–299, 2001. doi:10.1007/3-540-44987-6_18

10

https://doi.org/10.1007/978-3-540-28628-8_20
https://doi.org/10.1007/978-3-642-14623-7_12
http://eprint.iacr.org/2010/133
https://doi.org/10.1007/11761679_35
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-642-01001-9_24
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/BFb0052253
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/3-540-48405-1_7
https://doi.org/10.1007/3-540-48910-X_7
http://www.geocities.ws/rayvaneng/w0597_09.htm
http://www.geocities.ws/rayvaneng/w0597_09.htm
https://doi.org/10.1007/978-3-642-36334-4_8
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1145/2517840.2517852
https://doi.org/10.1007/3-540-68339-9_7
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/3-540-44987-6_18

27. R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, T. Rabin. Efficient multi-party computations secure against an
adaptive adversary. In Eurocrypt ’99, LNCS 1592, pp. 311–326, 1999. doi:10.1007/3-540-48910-X_22

28. I. Damgård, G. Mikkelsen. Efficient, robust and constant-round distributed RSA key generation. In TCC 2010,
LNCS 5978, pp. 183–200, 2010. doi:10.1007/978-3-642-11799-2_12

29. A. Dent. A note on game-hopping proofs. Cryptology ePrint Archive: Report 2006/260. http://eprint.iacr.org/
2006/260

30. A. De Santis, Y. Desmedt, Y. Frankel, M. Yung. How to share a function securely. In STOC ’94, pp. 522-533, 1994.
doi:10.1145/195058.195405

31. Y. Desmedt. Society and group oriented cryptography: A new concept. In Crypto ’87, LNCS 293, pp. 120–127, 1987.
doi:10.1007/3-540-48184-2_8

32. Y. Desmedt, Y. Frankel. Threshold cryptosystems. In Crypto’89, LNCS 435, pp. 307–315, 1989. doi:10.1007/0-387-
34805-0_28

33. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In Crypto ’84, LNCS
196, pp. 10–18, 1985. doi:10.1007/3-540-39568-7_2

34. P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In FOCS ’87, pp. 427–437, 1987.
doi:10.1109/SFCS.1987.4

35. P.-A. Fouque, J. Stern. Fully distributed threshold RSA under standard assumptions. In Asiacrypt 2001, LNCS
2248, pp. 310–330, 2001. doi:10.1007/3-540-45682-1_19

36. Y. Frankel, P. MacKenzie, M. Yung. Robust efficient distributed RSA-key generation. In STOC ’98, pp. 663–672,
1998. doi:10.1145/276698.276882

37. Y. Frankel, P. MacKenzie, M. Yung. Adaptively-secure distributed public-key systems. In ESA ’99, LNCS 1643, pp.
4–27, 1999. doi:10.1007/3-540-48481-7_2

38. Y. Frankel, P. MacKenzie, M. Yung. Adaptively-secure optimal-resilience proactive RSA. In Asiacrypt ’99, LNCS
1716, pp. 180–194, 1999. doi:10.1007/978-3-540-48000-6_15

39. Y. Frankel, P. Gemmell, P. MacKenzie, M. Yung. Optimal resilience proactive public-key cryptosystems. In FOCS ’97,
pp. 384–393, 1997. doi:10.1109/SFCS.1997.646127

40. D. Freeman. Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In
Eurocrypt 2010, LNCS 6110, pp. 44-61, 2010. doi:10.1007/978-3-642-13190-5_3

41. R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin. Robust threshold DSS signatures. In Eurocrypt ’96, LNCS 1070,
pp. 354–371, 1996. doi:10.1007/3-540-68339-9_31

42. R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin. Robust and efficient sharing of RSA functions. In Crypto ’96, LNCS
1109, pp. 157–172, 1996. doi:10.1007/3-540-68697-5_13

43. R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin. Secure distributed key generation for discrete-log based cryptosystems.
In Eurocrypt ’99, LNCS 1592, pp. 295–310, 1999. doi:10.1007/3-540-48910-X_21

44. R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin. Secure applications of Pedersen’s distributed key generation
protocol. In CT-RSA 2003, LNCS 2612, pp. 373–390, 2003. doi:10.1007/3-540-36563-X_26

45. R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin. Secure distributed key generation for discrete-log based cryptosystems.
Journal of Cryptology 20(1):51–83, 2007. doi:10.1007/s00145-006-0347-3

46. R. Gennaro, S. Halevi, H. Krawczyk, T. Rabin. Threshold RSA for dynamic and ad-hoc groups. In Eurocrypt 2008,
LNCS 4965, pp. 88–107, 2008. doi:10.1007/978-3-540-78967-3_6

47. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, M. Yung. Proactive public key and signature systems. In
ACM-CCS ’97, pp. 100–110, 1997. doi:10.1145/266420.266442

48. A. Herzberg, S. Jarecki, H. Krawczyk, M. Yung. Proactive secret sharing or: How to cope with perpetual leakage.
In Crypto ’95, LNCS 963, pp. 339-352, 1995. doi:10.1007/3-540-44750-4_27

49. S. Jarecki, A. Lysyanskaya. Adaptively Secure Threshold cryptography: Introducing concurrency, removing erasures.
In Eurocrypt 2000, LNCS 1807, pp. 221–242, 2000. doi:10.1007/3-540-45539-6_16

50. T. Kim and R. Barbulescu. Extended tower number field sieve: A new complexity for the medium prime case. In
Crypto 2016, LNCS 9814, pp. 543–571. Springer, 2016. doi:10.1007/978-3-662-53018-4_20

51. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, B. Zhao. OceanStore: An architecture for global-scale persistent storage. In ASPLOS 2000,
pp. 190-201, 2000. doi:10.1145/356989.357007

52. J. Katz, M. Yung. Threshold cryptosystems based on factoring. In Asiacrypt 2002, LNCS 2501, pp. 199-205, 2002.
doi:10.1007/3-540-36178-2_12

53. A. Lewko, B. Waters. New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In
TCC 2010, LNCS 5978, pp. 455–479, 2010. doi:10.1007/978-3-642-11799-2_27

54. A. Lewko. Tools for simulating features of composite order bilinear groups in the prime order setting. In Eurocrypt
2012, LNCS 5978, pp. 318–33, 2012. doi:10.1007/978-3-642-29011-4_20

55. B. Libert, M. Joye, M. Yung. Born and raised distributively: Fully distributed non-interactive adaptively secure
threshold signatures with short shares. In PODC 2014, pp. 303–312, 2014. doi:10.1145/2611462.2611498

56. B. Libert, M. Joye, M. Yung. Born and raised distributively: Fully distributed non-interactive adaptively secure
threshold signatures with short shares. In Theoretical Computer Science 645:1–24, 2016. doi:10.1016/j.tcs.2016.02.031

57. B. Libert, T. Peters, M. Joye, M. Yung. Linearly homomorphic structure-preserving signatures and their applications.
In Crypto 2013, LNCS 8043, pp. 289–307, 2013. doi:10.1007/978-3-642-40084-1_17

11

https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/978-3-642-11799-2_12
http://eprint.iacr.org/2006/260
http://eprint.iacr.org/2006/260
https://doi.org/10.1145/195058.195405
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1007/3-540-45682-1_19
https://doi.org/10.1145/276698.276882
https://doi.org/10.1007/3-540-48481-7_2
https://doi.org/10.1007/978-3-540-48000-6_15
https://doi.org/10.1109/SFCS.1997.646127
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/3-540-68697-5_13
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/3-540-36563-X_26
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/978-3-540-78967-3_6
https://doi.org/10.1145/266420.266442
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-45539-6_16
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1145/356989.357007
https://doi.org/10.1007/3-540-36178-2_12
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1145/2611462.2611498
https://doi.org/10.1016/j.tcs.2016.02.031
https://doi.org/10.1007/978-3-642-40084-1_17

58. B. Libert, M. Yung. Adaptively secure non-interactive threshold cryptosystems. Theoretical Computer Science
478:76–100, 2013. Extended abstract in ICALP 2011, LNCS 6756, pp. 588–600, 2011. doi:10.1016/j.tcs.2013.01.001

59. B. Libert, M. Yung. Non-interactive CCA2-secure threshold cryptosystems with adaptive security: New framework
and constructions. In TCC 2012, LNCS 7194, pp. 75–93, 2012. doi:10.1007/978-3-642-28914-9_5

60. A. Lysyanskaya, C. Peikert. Adaptive security in the threshold setting: From cryptosystems to signature schemes.
In Asiacrypt 2001, LNCS 2248, pp. 331–350, 2001. doi:10.1007/3-540-45682-1_20

61. T. Malkin, I. Teranishi, Y. Vahlis, M. Yung. Signatures resilient to continual leakage on memory and computation.
In TCC 2011, LNCS 6597, pp. 89–106, 2011. doi:10.1007/978-3-642-19571-6_7

62. M. Naor, O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. In FOCS ’97, pp.
458–467, 1997. doi:10.1109/SFCS.1997.646134

63. T. Okamoto. Provably secure and practical identification schemes and corresponding signature schemes. In Crypto ’92,
LNCS 740, pp. 31–53, 1993. doi:10.1007/3-540-48071-4_3

64. R. Ostrovksy, M. Yung. How to withstand mobile virus attacks. In PODC ’91, pp. 51–59, 1991.
doi:10.1145/112600.112605

65. T. Pedersen. A threshold cryptosystem without a trusted party. Eurocrypt ’91, LNCS 547, pp. 522–526, 1991.
doi:10.1007/3-540-46416-6_47

66. T. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. Crypto ’91, LNCS 576, pp.
129–140, 1991. doi:10.1007/3-540-46766-1_9

67. T. Rabin. A simplified approach to threshold and proactive RSA. In Crypto ’98, LNCS 1462, pp. 89–104, 1998.
doi:10.1007/BFb0055722

68. S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, J. Kubiatowicz. Pond: The OceanStore prototype. In Fast
2003, USENIX Workshop on File and Storage Technologies, 2003. http://www.usenix.org/events/fast03/tech/
rhea.html

69. M. Scott. Authenticated ID-based key exchange and remote log-in with simple token and PIN number. Cryptology
ePrint Archive: Report 2002/164. http://eprint.iacr.org/2002/164

70. A. Shamir. How to share a secret. Communications of ACM 22(11):612–613, 1979. doi:10.1145/359168.359176
71. V. Shoup. Practical threshold signatures. In Eurocrypt 2000, LNCS 1807, pp. 207–220, 2000. doi:10.1007/3-540-

45539-6_15
72. H. Wee. Threshold and revocation cryptosystems via extractable hash proofs. In Eurocrypt 2011, LNCS 6632, pp.

589–609, 2011. doi:10.1007/978-3-642-20465-4_32
73. Z. Wang, H. Qian, Z. Li. Adaptively secure threshold signature scheme in the standard model. Informatica

20(4):591-–612, 2009. https://www.mii.lt/Informatica/htm/INFO739.htm
74. B. Waters. Efficient identity-based encryption without random oracles. In Eurocrypt 2005, LNCS 3494, 2005.

doi:10.1007/11426639_7
75. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In Crypto 2009,

LNCS 5677, pp. 619–636, 2009. doi:10.1007/978-3-642-03356-8_36

A Definition of Linearly Homomorphic Structure-Preserving Signatures

Let (G, Ĝ,GT) be groups of prime order p with an efficiently computable bilinear map e : G×Ĝ→ GT .
A signature scheme is structure-preserving [3] if messages, signatures and public keys live in

the groups G or Ĝ. In linearly homomorphic structure-preserving signatures, the message spaceM
consists of pairsM := T ×GN , for some N ∈ N, where T is a tag space.

Definition 4. A linearly homomorphic structure-preserving signature scheme over (G, Ĝ,GT) is a
tuple of efficient algorithms Σ = (Keygen,Sign,Sign-Derive,Verify) for which the message space is
M := T ×GN , for some integer n ∈ poly(λ) and some set T , and with the following specifications.

Keygen(λ,N) is a randomized algorithm that takes in a security parameter λ ∈ N and an integer
N ∈ poly(λ) denoting the dimension of vectors to be signed. It outputs a key pair (pk, sk), where
pk includes the description of a tag space T , where each tag serves as a file identifier.

Sign(sk, τ,M) is a possibly randomized algorithm that inputs a private key sk, a file identifier τ ∈ T
and a vector M = (M1, . . . ,MN) ∈ GN . It outputs a signature σ ∈ Gns, for some ns ∈ poly(λ).

Sign-Derive(pk, τ, {(ωi, σ(i))}`i=1): is a (possibly randomized) derivation algorithm. It inputs a public
key pk, a file identifier τ as well as ` pairs (ωi, σ(i)), each of which consists of a coefficient ωi ∈ Zp
and a signature σ(i) ∈ Gns . It outputs a signature σ ∈ Gns on the vector M =

∏`
i=1 M ωi

i , where
σ(i) is a signature on M i.

12

https://doi.org/10.1016/j.tcs.2013.01.001
https://doi.org/10.1007/978-3-642-28914-9_5
https://doi.org/10.1007/3-540-45682-1_20
https://doi.org/10.1007/978-3-642-19571-6_7
https://doi.org/10.1109/SFCS.1997.646134
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1145/112600.112605
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/BFb0055722
http://www.usenix.org/events/fast03/tech/rhea.html
http://www.usenix.org/events/fast03/tech/rhea.html
http://eprint.iacr.org/2002/164
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/978-3-642-20465-4_32
https://www.mii.lt/Informatica/htm/INFO739.htm
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/978-3-642-03356-8_36

Verify(pk, τ,M , σ) is a deterministic verification algorithm that takes as input a public key pk, a file
identifier τ ∈ T , a signature σ and a vector M = (M1, . . . ,MN). It outputs 0 or 1 depending on
whether σ is deemed valid or not.

In a one-time linearly homomorphic SPS, the tag τ can be omitted in the specification as a given
key pair (pk, sk) only allows signing one linear subspace.

As in all linearly homomorphic signatures, the security requirement is that the adversary be
unable to create a valid triple (τ?,M?, σ?) for a new file identifier τ? or, if τ? is recycled from one or
more honestly generated signatures, for a vector M? outside the linear span of the vectors that have
been legitimately signed for the tag τ?.

An important property is that the SignDerive algorithm must operate on vectors that are all
labeled with the same tag.

B Proof of Theorem 1

Proof. The proof proceeds with a sequence of three games. The latter begins with Game 0, which is
the real game, and ends with Game 2, where any PPT adversary is shown to contradict the Double
Pairing assumption. For each j ∈ {0, 1, 2}, Sj denotes the event that the adversary wins in Game j.

We assume w.l.o.g. that the adversary A always queries the random oracle H before any signing
query for the same message M . The challenger can always enforce this by making random oracle
queries for itself. We also assume that random oracle queries are distinct.

Game 0: This is the real game. Namely, the challenger runs the Dist-KeyGen protocol on behalf of all
uncorrupted players. Whenever the adversary A decides to corrupt a player Pi, the challenger sets
C = C ∪ {i}, G = G\{i} and faithfully reveals the internal state of Pi, which includes Pi’s private
key share SKi = {(Ak(i), Bk(i))}2k=1 and his polynomials {Aik[X], Bik[X]}2k=1 if the corruption
query occurs after step 1.a of Dist-KeyGen. Whenever a player Pi is corrupted, A receives full
control over Pi and may cause him to arbitrarily deviate from the protocol. Queries to the random
oracle H are answered by returning uniformly random group elements in G2. Partial signature
queries (i,M) are answered by returning the values (zi, ri) =

(∏2
k=1H

−Ak(i)
k ,

∏2
k=1H

−Bk(i)
k

)
. At

the end of the game, A outputs a message-signature pair
(
σ? = (z?, r?),M?

)
. We assume that the

adversary queries H(M?) before producing its forgery. We denote by S0 the event that σ? = (z?, r?)
is a valid signature.
In the following, we define Ak[X] =

∑
i∈QAik[X] and Bk[X] =

∑
i∈QBik[X] as well as (ak0, bk0) =

(
∑
i∈Q aik0,

∑
i∈Q bik0) for each k ∈ {1, 2}. We remark that, at the end of the Dist-KeyGen protocol,

the challenger knows the polynomials {Ajk[X], Bjk[X]}2k=1 and the additive shares {(ajk0, bjk0)}2k=1
of all non-disqualified players j ∈ Q. Indeed, for each j ∈ Q∩C such that Pj was corrupted before
step 1.a of the distributed key generation phase, it obtained at least t+1 shares {Ajk(i), Bjk(i)}2k=1,
which is sufficient for reconstructing {Ajk[X], Bjk[X]}2k=1. As for other players Pj such that j ∈ Q,
the challenger honestly chose their sharing polynomials at step 1.a of Dist-KeyGen.

Game 1: This game is identical to Game 0 with the following difference. For each random oracle query
H(M), the challenger B flips a biased coin ϑM ∈ {0, 1} that takes the value 1 with probability
1/(qs + 1) and the value 0 with probability qs/(qs + 1). When the game ends, B considers the
event E that either of the following conditions holds:
– For the message M?, the coin ϑM? ∈ {0, 1} flipped for the hash query H(M?) was ϑM? = 0.
– There exists signing query (i,M) with M 6= M? for which ϑM = 1.
If event E occurs (which B can detect at the end of the game), B halts and declares failure. The
same analysis as that of Coron [22] shows that Pr[¬E] = 1/(e(qs + 1)), where e is the base for the
natural logarithm. The transition from Game 0 to Game 1 is thus a transition based on a failure
event of large probability [29] and we thus have Pr[S1] = Pr[S0] · Pr[¬E] = Pr[S0]/(e(qs + 1)).

13

Game 2: We modify the distribution of random oracle outputs. Specifically, the challenger B chooses
generators g, h R← G at the beginning of the game and uses them to answer random oracle queries.
The treatment of each hash query H(M) depends on the random coin ϑM ∈ {0, 1}.
– If ϑM = 0, the challenger B chooses a random αM

R← Zp, and programs the random oracle so
as to have H(M) = (gαM , hαM). Note that the resulting hash value H(M) ∈ G2 is no longer
uniform in G2 as it now lives in the one-dimensional space spanned by the vector (g, h) ∈ G2.

– If ϑM = 1, B chooses a uniformly random pair (gM , hM) ∈ G2 and sets H(M) = (gM , hM).
Lemma 1 below shows that Game 2 and Game 1 are computationally indistinguishable if the
DDH assumption holds in the group G. It follows that |Pr[S2]− Pr[S1]| ≤ AdvDDH1(B).

In Game 2, we claim that Pr[S2] ≤ Adv(B)DP(λ) + 1/p as B implies a DP-solving algorithm.
Indeed, with probability 1/(e(qs + 1)), the hash value H(M?) = (H?

1 , H
?
2) ∈ G2 is uniformly

random for the message M? involved in the forgery (z?, r?) whereas, for each signed message M
such that M 6= M?, H(M) = (H1, H2) lives in the one-dimensional subspace spanned by (g, h). We
also note that, while the adversary is allowed to submit queries of the form (i,M?) to the partial
signing oracle, these queries do not reveal any more information than if the challenger were simply
handing over the corresponding private share SKi. We thus treat these partial signing queries for
M? as corruption queries. When A halts, the challenger determines which players have generated a
partial signature on M? and moves them from G to C. Note that, for these updated sets G and C, it
still knows the polynomials {(Ajk[X], Bjk[X])}2k=1 for all j ∈ C. Let us define the aggregated additive
shares

ak,G =
∑
j∈G

ajk0 bk,G =
∑
j∈G

bjk0 k ∈ {1, 2} .

ak,Q∩C =
∑

j∈Q∩C
ajk0 bk,Q∩C =

∑
j∈Q∩C

bjk0

We remark that all pairs {(ak,G , bk,G)}2k=1 are uniformly distributed in Z2
p since they are obtained by

summing additive shares that were honestly chosen by the challenger.
We also argue that a2,G is independent of A’s view. To see this, consider what an unbounded

A learns. Corruption queries reveal {Aj2(i)}j∈G,i∈C, which is insufficient to infer anything about
a2,G =

∑
j∈G Aj2(0) since |C| ≤ t. For each M 6= M?, signing queries are answered by returning

(zi, ri) =
(
H
−A1(i)
1 H

−A2(i)
2 , H

−B1(i)
1 H

−B2(i)
2

)
=
(
(g−A1(i) · h−A2(i))αM , (g−B1(i) · h−B2(i))αM

)
.

Note that the information supplied by ri is redundant since, for a given pair (H1, H2) and a given
zi ∈ G, there is only one ri ∈ G satisfying e(zi, ĝz) · e(ri, ĝr) ·

∏2
k=1 e(Hk, V̂k,i) = 1GT

. Since A knows
{(Ajk[X], Bjk[X])}2k=1 for each j ∈ Q ∩ C, it can obtain

zi,G =
(
g
−
∑

j∈G Aj1(i) · h−
∑

j∈G Aj2(i))αM , (2)

However, these partial signatures (zi, ri) onM 6= M? only provide A with redundant information about(∑
j∈G Aj1(i),

∑
j∈G Aj2(i),

∑
j∈G Bj1(i),

∑
j∈G Bj2(i)

)
. The only thing that A really learns from (2) is

the value
∑
j∈G(Aj1(i) + ω ·Aj2(i)), where ω = logg(h). In addition, during step 2 of the Dist-Keygen

protocol, relation (1) also provides the adversary with ĝzAjk(i)ĝr
Bjk(i) for each i ∈ {1, . . . , n}, j ∈ G

and k ∈ {1, 2}. Still, the only way to leverage these pieces of information is to interpolate them and
get a1,G + ω · a2,G as well as {ak,G + ρ · bk,G}2k=1, where ρ = logĝz

(ĝr), which leaves A with a system of
3 equations in 4 unknowns {(ak,G , bk,G)}2k=1. As a consequence, a2,G remains completely undetermined
in A’s view as long as |C| ≤ t.

The lack of adversarial information about a2,G allows solving the DP problem as follows. For the
target message M?, we can write (H?

1 , H
?
2) = (gαM? , hαM? +γ), for some random αM? , γ ∈R Zp. This

14

implies that, if the challenger computes a product (z†, r†) of its own partial signatures on the message
M? using the sum (a1,G , a2,G , b1,G , b2,G) of its additive shares, this product can be written as

(z†, r†) =
(
H?

1
−a1,G ·H?

2
−a2,G , H?

1
−b1,G ·H?

2
−b2,G

)
=
(
(ga1,G · ha2,G)−αM? · h−γ·a2,G , (gb1,G · hb2,G)−αM? · h−γ·b2,G

)
, (3)

where z† is completely unpredictable by A. Indeed, in the right-hand-side member of (3), A can
information-theoretically determine the term (ga1,G ·ha1,G)αM? by interpolating the discrete logarithms∑
j∈G(Aj,1(i) + ωAj,2(i)) obtained from (2) (note that, although (g, h) are not explicitly given to A,

they can be inferred, in the same way as exponents αM and αM? , by observing hash values). However,
the uniformly random term h−γ·a2,G remains completely independent of A’s view.

Now, the challenger can use the adversary’s forgery (z?, r?) to compute

(z�, r�) =
(
z? ·H?

1
a1,Q∩C ·H?

2
a2,Q∩C , r? ·H?

1
b1,Q∩C ·H?

2
b2,Q∩C

)
,

which, if we define ĝ1,G = ĝz
a1,G · ĝrb1,G and ĝ2,G = ĝz

a2,G · ĝrb2,G , is easily seen to satisfy

e(z�, ĝz) · e(r�, ĝz) · e(H?
1 , ĝ1,G) · e(H?

2 , ĝ2,G) = 1GT

since ĝ1 = ĝ1,G · ĝz a1,Q∩C · ĝr b1,Q∩C and ĝ2 = ĝ2,G · ĝz a2,Q∩C · ĝr b2,Q∩C .
From (3), we see that (z†, r†) also satisfies e(z†, ĝz) · e(r†, ĝz) · e(H?

1 , ĝ1,G) · e(H?
2 , ĝ2,G) = 1GT

by
construction. Given that z† is independent of A’s view, the quotient (z†/z�, r†/r�) forms a non-trivial
solution to the DP instance (ĝz, ĝr) with probability 1− 1/p. Such a solution easily allows building a
distinguisher for the DDH problem in Ĝ. We thus find the upper bound

Adv(A) ≤ e · (qs + 1) ·
(
AdvDDH1(B) + AdvDDH2(B) + 1

p

)
, (4)

where qs is the number of signing queries and e is the base for the natural logarithm. ut

Lemma 1. Under the DDH assumption in G, Game 2 is indistinguishable from Game 1.

Proof. The proof is by contradiction and builds a straightforward DDH distinguisher B from an
adversary A that has noticeably different behaviors in Game 1 and Game 2.

The reduction B receives as input a pair (g, gx, gy, T) and has to decide whether T = gxy or
T ∈R G. To this end, algorithm B begins by generating PK, SK and VK in the same way as in the
real scheme. In addition, it defines h = gy. Throughout the game, B always answers partial signing
queries and corruption queries faithfully. However, the treatment of random oracle queries H(M)
depends on the value of the biased coin δM ∈ {0, 1}. Namely, when δM = 0, B uses the random
self-reducibility of DDH and builds many DDH instances out of one.

– If δM = 0, B chooses αM , βM
R← Zp, computes (gM , hM) = ((gx)αM · gβM , TαM · (gy)βM) and

programs the random oracle so as to have H(M) = (H1, H2) = (gM , hM). Observe that, if
T = gxy, the pair (H1, H2) = (gM , hM) has the same distribution as in Game 2 as it can be
written (H1, H2) = (gzM , hzM) with zM = x · αM + βM . If T ∈R G, we can write T = gxy+z for
some random z ∈R Zp. In this case, we have (H1, H2) = (gzM , hzM +x·αM), so that (H1, H2) ∈R G2.

– If δM = 1, B draws gM , hM
R← G2 and defines H(M) = (gM , hM).

When A terminates, B outputs a random bit if event E has come about during the game. Otherwise,
B outputs 1 if b′ = b and 0 otherwise.

Clearly, if T = gxy, A’s view is exactly the same as in Game 2. In contrast, if T is uniform in G,
B is rather playing Game 1 with the adversary. ut

15

	Fully Distributed Non-Interactive Adaptively-Secure Threshold Signature Scheme with Short Shares: Efficiency Considerations and Implementation
	Introduction
	Background
	Definitions for Threshold Signatures
	Hardness Assumptions
	Linearly Homomorphic Structure-Preserving Signatures

	A Practical Adaptively Secure Non-Interactive Threshold Signature
	Description
	Security
	Adding Proactive Security
	Implementation Results

	Definition of Linearly Homomorphic Structure-Preserving Signatures
	Proof of Theorem 1

