
Published in Designs, Codes and Cryptography, 77(2):441–477, 2015.

Linearly Homomorphic Structure-Preserving Signatures
and Their Applications

Benôıt Libert · Thomas Peters · Marc Joye ·
Moti Yung

Abstract Structure-preserving signatures (SPS) are signature schemes where mes-
sages, signatures and public keys all consist of elements of a group over which a
bilinear map is efficiently computable. This property makes them useful in cryp-
tographic protocols as they nicely compose with other algebraic tools (like the
celebrated Groth-Sahai proof systems). In this paper, we consider SPS systems
with homomorphic properties and suggest applications that have not been pro-
vided before (in particular, not by employing ordinary SPS). We build linearly
homomorphic structure-preserving signatures under simple assumptions and show
that the primitive makes it possible to verify the calculations performed by a server
on outsourced encrypted data (i.e., combining secure computation and authenti-
cated computation to allow reliable and secure cloud storage and computation,
while freeing the client from retaining cleartext storage). Then, we give a generic
construction of non-malleable (and actually simulation-sound) commitment from
any linearly homomorphic SPS. This notably provides the first constant-size non-
malleable commitment to group elements.

Keywords Structure-preserving cryptography · Signatures · Homomorphism ·
Commitment schemes · Non-malleability

Mathematics Subject Classification (2000) 94A60 · 14G50

This is the full version of a paper [58] that appeared in Crypto 2013 with the same title.

This work was done while the first author was with Technicolor (France).

This work was done while the second author was supported by the CAMUS Walloon Region
Project at the UCL Crypto Group (Belgium).

Benôıt Libert
Ecole Normale Supérieure de Lyon (France)

Thomas Peters
Université catholique de Louvain (Belgium) and Ecole Normale Supérieure (France)

Marc Joye
Technicolor (USA)

Moti Yung
Google Inc. and Columbia University (USA)

2 Benôıt Libert et al.

1 Introduction

Composability is an important cryptographic design notion for building systems
and protocols. Inside protocols, cryptographic tools need to compose well with
each other in order to be used in combination. Structure-preserving cryptogra-
phy [3], in turn, is a recent paradigm that takes care of composing algebraic tools,
and primarily within groups supporting bilinear maps to allow smooth composi-
tion with the Groth-Sahai proof systems [50]. The notion allows for modular and
simplified designs of various cryptographic protocols and primitives. In the last
three years, a large body of works has analyzed the feasibility and the efficiency
of structure-preserving signatures (SPS) [46,29,39,6,3,4,20,30,51,1,2], public-key
encryption [22] and commitments schemes [47,7].

In this paper, we consider SPS schemes with linearly homomorphic properties
and argue that such primitives have many applications, even independently of
Groth-Sahai proofs. Let us next review our results and then review related work.

1.1 Our Contributions

Linearly Homomorphic Structure-Preserving Signatures. In this paper, we put forth
the notion of linearly homomorphic structure-preserving signatures (linearly homo-
morphic signatures and structure-preserving signatures have been defined before,
as we review in the sequel, but the combination of the earlier notions is useful and
non-trivial). These signature schemes function exactly like ordinary homomorphic
signatures with the additional restriction that signatures and messages only consist
of (vectors of) group elements whose discrete logarithms may not be available. We
describe three constructions and prove their security under established complexity
assumptions in symmetric bilinear groups.

Applications. As in all SPS systems, the structure-preserving property makes it
possible to efficiently prove knowledge of a homomorphic signature on a com-
mitted vector. However, as indicated above, we describe applications of linearly
homomorphic SPS beyond their compatibility with the Groth-Sahai techniques.

First, we show that the primitive enables verifiable computation mechanisms
on encrypted data.1 Specifically, it allows a client to store encrypted files on an
untrusted remote server. While the dataset is encrypted using an additively homo-
morphic encryption scheme, the server is able to blindly compute linear functions
on the original data and provide the client with a short homomorphically derived
signature vouching for the correctness of the computation. This is achieved by hav-
ing the client sign each ciphertext using a homomorphic SPS scheme and handing
the resulting signatures to the server at the beginning. After this initial phase, the
client only needs to store a short piece of information, no matter how large the
file is. Still, he remains able to authenticate linear functions on his data and the
whole process is completely non-interactive. The method extends when datasets
are encrypted using a CCA1-secure encryption scheme. Indeed, we will observe

1 Our goals are very different from those of [43], where verifiable computation on homo-
morphically encrypted data is also considered. We do not seek to outsource computation but
rather save the client from storing large datasets.

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 3

that linearly homomorphic SPS schemes yield simple homomorphic IND-CCA1-
secure cryptosystems with publicly verifiable ciphertexts.

As a second and perhaps more surprising application, we show that linearly
homomorphic SPS schemes generically yield non-malleable [36] trapdoor commit-
ments to group elements. We actually construct a simulation-sound trapdoor com-
mitment [41] —a primitive known (by [41,61]) to imply re-usable non-malleable
commitments with respect to opening [32]— from any linearly homomorphic SPS
satisfying a relatively mild condition. To our knowledge, we thus obtain the first
constant-size trapdoor commitments to group elements providing re-usable non-
malleability with respect to opening. Previous non-interactive commitments to
group elements were either malleable [50,47] or inherently length-increasing [37]:
if we disregard the trivial solution consisting of hashing the message first (which
is not an option when we want to allow for efficient proofs of knowledge of an
opening), no general technique has been known, to date, for committing to many
group elements at once using a short commitment string.

In the structure-preserving case, our transformation is purely generic as it
applies to a template which any linearly homomorphic SPS necessarily satisfies
in symmetric bilinear groups. We also generalize the construction so as to build
simulation-sound trapdoor commitments to vectors from any pairing-based (non-
structure-preserving) linearly homomorphic signature. In this case, the conversion
is only semi-generic as it imposes conditions which are only met by pairing-based
systems for the time being: essentially, we need the underlying signature scheme to
operate over groups of finite, public order. While only partially generic, this con-
struction of non-malleable commitments from linearly homomorphic signatures is
somewhat unexpected considering that the terms “non-malleability” and “homo-
morphism” are antagonistic, and thus may be considered incompatible.

Subsequently to this work [58], other surprising applications of linearly ho-
momorphic SPS were considered [59,56,57,28]. In [59], they were used by Lib-
ert et al. to construct short quasi-adaptive2 non-interactive zero-knowledge (QA-
NIZK) [54] arguments of linear subspace membership: When it comes to proving
that a vector ~v ∈ Gn of group elements belongs to a linear subspace of rank t,
the techniques of Jutla and Roy [54] cost O(n− t) group elements per proof while
linearly homomorphic SPS allow for proofs made of O(1) group elements (similar
results were independently obtained by Jutla and Roy [55] using different tech-
niques). Those constant-size QA-NIZK arguments were used [57] to build signa-
ture schemes with tight reductions under standard assumptions. Catalano, Marce-
done and Puglisi [28] used linearly homomorphic structure-preserving signatures
to design online/offline linearly homomorphic signatures. Finally, Libert, Joye and
Yung [56] used the primitive (albeit non generically) to design non-interactive
adaptively secure threshold signatures with a number of useful properties.

Techniques and Ideas. At first, the very name of our primitive may sound almost
self-contradictory when it comes to formally define its security. Indeed, the security
of a linearly homomorphic scheme [19] notably requires that it be infeasible to
publicly compute a signature on a vector outside the linear span of originally

2 In short, these are NIZK arguments where the common reference string may depend on
the language for which proofs have to be generated. However, a single simulator should be
effective for the entire class of languages.

4 Benôıt Libert et al.

signed vectors. The problem is that, when vector entries live in a discrete-logarithm
hard group, deciding whether several vectors are independent or not is believed
to be a hard problem. Yet, this will not prevent us from applying new techniques
and constructing schemes with security proofs under simple assumptions and the
reduction will be able to detect when the adversary has won by simply solving the
problem instance it received as input.

Our first scheme’s starting point is the one-time (regular) SPS scheme of Abe
et al. [6]. By removing certain public key components, we obtain the desired linear
homomorphism, and prove the security using information-theoretic arguments as
in [6]. The key observation here is that, as long as the adversary does not output
a signature on a linear combination of previously signed vectors, it will be unable
to sign its target vector in the same way as the reduction would, because certain
private key components will remain perfectly hidden.

Our initial scheme inherits the one-time restriction of the scheme in [6] in that
only one linear subspace can be safely signed with a given public key. Nevertheless,
we can extend it to build a full linearly homomorphic SPS system. To this end,
we suitably combine our first scheme with Waters signatures [67]. Here, Waters
signatures are used as a resting ground for fresh random exponents which are
introduced in each signed vector and help us refresh the state of the system and
apply each time the same argument as in the one-time scheme. We also present
techniques to turn the scheme into a fully randomizable one, where a derived
signature has the same distribution as a directly signed message.

In our simulation-sound commitments to group elements, the commitment gen-
eration technique appeals to the verification algorithm of the signature scheme, and
proceeds by evaluating the corresponding pairing-product equations on the mes-
sage, but using random group elements instead of actual signatures. The binding
and simulation-binding properties, in turn, stem from the infeasibility of forging
signatures while the signature homomorphism allows equivocating fake commit-
ments when simulating the view of an adversary. It was already known how to build
simulation-sound and non-malleable commitments [41,61,32,42,24] from signature
schemes with efficient Σ protocols. Our method is, in fact, different and immedi-
ately yields length-reducing structure-preserving commitments to vectors without
using Σ protocols.

1.2 Related Work

Structure-Preserving Signatures. Signature schemes where messages only consist of
group elements appeared for the first time —without the “structure-preserving”
terminology— as ingredients of Groth’s construction [46] of group signatures in the
standard model. The scheme of [46] was mostly a proof of concept, with signatures
consisting of thousands of group elements. More efficient realizations were given
by Cathalo, Libert and Yung [29] and Fuchsbauer [39]. Abe, Haralambiev and
Ohkubo [6,3] subsequently showed how to sign messages of n group elements at
once using O(1)-size signatures. Lower bounds on the size of structure-preserving
signatures were given in [4] while Abe et al. [5] provided evidence that optimally
short SPS necessarily rely on interactive assumptions. As an ingredient for their
tightly secure cryptosystems, Hofheinz and Jager [51] gave constructions based
on the Decision Linear assumption [16] while similar results were independently

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 5

achieved in [20,30]. Quite recently, Abe et al. [1,2] obtained constant-size signa-
tures without sacrificing the security guarantees offered by security proofs under
simple assumptions.

Regarding primitives beyond signature schemes, Camenisch et al. [22] showed
a structure-preserving variant of the Cramer-Shoup cryptosystem [31] and used
it to implement oblivious third parties [21]. Groth [47] described length-reducing
trapdoor commitments (i.e., where the commitment is shorter than the committed
message) to group elements whereas [7] showed the impossibility of realizing such
commitments when the commitment string lives in the same group as the mes-
sage. Sakai et al. [65] recently suggested to use structure-preserving identity-based
encryption [66] systems to restrict the power of the opening authority in group
signatures.

Linearly Homomorphic Signatures. The concept of homomorphic signatures can be
traced back to Desmedt [33] while proper definitions remained lacking until the
work of Johnson et al. [53]. Since then, constructions have appeared for various
kinds of homomorphisms (see [8] and references therein).

Linearly homomorphic signatures are an important class of homomorphic sig-
natures for arithmetic functions, whose study was initiated by Boneh, Freeman,
Katz and Waters [19]. While initially motivated by applications to network cod-
ing [19], they are also useful in proofs of storage [9,10] or in verifiable computation
mechanisms, when it comes to authenticate servers’ computations on outsourced
data (see, e.g., [8]). The recent years, much attention was given to the notion and
a variety of constructions [44,11,17,18,26,27,38,12,13] based on various assump-
tions have been studied.

1.3 Organization

Section 2 first gives security definitions for linearly homomorphic SPS systems,
for which efficient constructions are provided in Section 3. Their applications to
verifiable computation on encrypted data are explained in Section 4 while Section 5
shows how to build simulation-sound commitments to group elements. Implications
and generalizations of the latter are then given in Appendix E.

2 Background

2.1 Definitions for Linearly Homomorphic Signatures

Let (G,GT) be a configuration of (multiplicatively written) groups of prime order p
over which a bilinear map e : G×G→ GT is efficiently computable.

Following [6,3], we say that a signature scheme is structure-preserving if mes-
sages, signature components and public keys live in the group G.

We consider linearly homomorphic signatures for which the message space M
consists of pairsM := T ×Gn, for some n ∈ N, where T is a tag space. We remark
that, in the applications considered in this paper, tags do not need to be group
elements. We thus allow them to be arbitrary strings.

6 Benôıt Libert et al.

Definition 1 A linearly homomorphic structure-preserving signature scheme over
(G,GT) consists of a tuple of efficient algorithms Σ = (Keygen, Sign, SignDerive,
Verify) for which the message space is M := T × Gn, for some n ∈ poly(λ) and
some set T , and with the following specifications.

Keygen(λ, n): is a randomized algorithm that takes in a security parameter λ ∈ N
and an integer n ∈ poly(λ) denoting the dimension of vectors to be signed. It
outputs a key pair (pk, sk) and the description of a tag (i.e., a file identifier)
space T .

Sign(sk, τ, ~M): is a possibly probabilistic algorithm that takes as input a private
key sk, a file identifier τ ∈ T and a vector ~M ∈ Gn. It outputs a signature
σ ∈ Gns , for some ns ∈ poly(λ).

SignDerive(pk, τ, {(ωi, σ
(i))}`i=1): is a (possibly probabilistic) signature deriva-

tion algorithm. It takes as input a public key pk, a file identifier τ as well as
` pairs (ωi, σ

(i)), each of which consists of a weight ωi ∈ Zp and a signature

σ(i) ∈ Gns . The output is a signature σ ∈ Gns on the vector ~M =
∏`
i=1

~M ωi
i ,

where σ(i) is a signature on ~Mi.
Verify(pk, τ, ~M, σ): is a deterministic algorithm that takes in a public key pk, a

file identifier τ ∈ T , a signature σ and a vector ~M . It outputs 1 if σ is deemed
valid and 0 otherwise.

Correctness is expressed by imposing that, for all security parameters λ ∈ N, all
integers n ∈ poly(λ) and all triples (pk, sk, T)← Keygen(λ, n), the following holds:

1. For all τ ∈ T and all n-dimensional vectors ~M , if σ = Sign(sk, τ, ~M), then we
have Verify(pk, τ, ~M, σ) = 1.

2. For all τ ∈ T , any ` > 0 and any set of triples {(ωi, σ(i), ~Mi)}`i=1, if Verify(pk, τ,
~Mi, σ

(i)) = 1 for each i ∈ {1, . . . , `}, then Verify
(
pk, τ,

∏`
i=1

~M ωi
i , SignDerive(pk,

τ, {(ωi, σ(i))}`i=1)
)

= 1.

Security. In linearly homomorphic signatures, we use the same definition of un-
forgeability as in [12]. This definition implies security in the stronger model used
by Freeman [38] since the adversary can interleave signing queries for individual
vectors belonging to distinct subspaces. Moreover, file identifiers can be chosen
by the adversary (which strengthens the definition of [19]) and are not assumed
to be uniformly distributed. As a result, a file identifier can be a low-entropy,
easy-to-remember string such as the name of the dataset’s owner.

Definition 2 A linearly homomorphic SPS scheme Σ = (Keygen, Sign,Verify) is
secure if no PPT adversary has non-negligible advantage in the game below:

1. The adversary A chooses an integer n ∈ N and sends it to the challenger who
runs Keygen(λ, n) and obtains (pk, sk) before sending pk to A.

2. On polynomially-many occasions,A can interleave the following kinds of queries.
– Signing queries: A chooses a tag τ ∈ T and a vector ~M ∈ Gn. The challenger

picks a handle h and computes σ ← Sign(sk, τ, ~M). It stores (h, (τ, ~M, σ)) in
a table T and returns h.

– Derivation queries: A chooses a vector of handles ~h = (h1, . . . , hk) and a
set of coefficients {ωi}ki=1. The challenger retrieves the tuples {(hi, (τ, ~Mi),
σ(i))}ki=1 from T and returns ⊥ if one of these does not exist or if there exists

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 7

i ∈ {1, . . . , k} such that τi 6= τ . Otherwise, it computes ~M =
∏k
i=1

~Mωi
i and

runs σ′ ← SignDerive
(
pk, τ, {(ωi, σ(i))}ki=1

)
. It also chooses a handle h′, stores

(h′, (τ, ~M), σ′) in T and returns h′ to A.
– Reveal queries: A chooses a handle h. If no tuple of the form (h, (τ, ~M), σ′)

exists in T , the challenger returns ⊥. Otherwise, it returns σ′ to A and adds
((τ, ~M), σ′) to the set Q.

3. A outputs an identifier τ?, a signature σ? and a vector ~M? ∈ Gn. The adversary
A wins if Verify(pk, τ?, ~M?, σ?) = 1 and one of the conditions below is satisfied:
◦ (Type I): τ? 6= τi for any entry (τi, .) in Q and ~M? 6= (1G, . . . , 1G).
◦ (Type II): τ? = τi for ki > 0 entries (τi, .) in Q and ~M? 6∈ Vi, where
Vi denotes the subspace spanned by all vectors ~M1, . . . , ~Mki for which an
entry of the form (τ?, ~Mj), with j ∈ {1, . . . , ki}, appears in Q.

A’s advantage is its probability of success taken over all coin tosses.

In our first scheme, we will consider a weaker notion of one-time security. In this
notion, the adversary is limited to obtain signatures for only one linear subspace.
In this case, there is no need for file identifiers and we assume that all vectors are
assigned the identifier τ = ε.

In the following, the adversary will be said independent if

– For any given tag τ , it is restricted to only query the signing oracle on linearly
independent vectors.

– Each vector is only queried at most once to the signing oracle.

Non-independent adversaries are not subject to the above restrictions. It will be
necessary to consider these adversaries in our construction of non-malleable com-
mitments. Nevertheless, security against independent adversaries suffices for many
applications —including encrypted cloud storage— since the signer can always ap-
pend unit vectors to each newly signed vector.

At first, one may wonder how Definition 2 can be satisfied at all given that
the challenger may not have an efficient way to check whether the adversary is
successful. Indeed, in cryptographically useful discrete-logarithm-hard groups G,
deciding whether vectors { ~Mi}i of Gn are linearly dependent is believed to be
difficult when n > 2. However, it may be possible using some trapdoor information
embedded in pk, especially if the adversary additionally outputs signatures on
{ ~Mi}i.

In some applications, it makes sense to consider a weaker attack model where,
in the case of Type II attacks, the adversary is only deemed successful if it can
output a convincing proof that its target vector ~M? is indeed independent of the
vectors that were signed for the tag τ?. The proof can be either a NIZK proof or,
alternatively, a vector in the kernel of the matrix whose rows are the vectors that
were signed for τ?. We call such an adversary a targeting adversary.

2.2 Hardness Assumptions

We rely on the following hardness assumptions, the first of which implies the
second one.

8 Benôıt Libert et al.

Definition 3 ([16]) The Decision Linear Problem (DLIN) in G, is to distinguish

the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz), with a, b, c, d
R← Z∗p,

z
R← Z∗p. The Decision Linear Assumption is the intractability of DLIN for any PPT

distinguisher D.

Definition 4 ([29]) The Simultaneous Double Pairing problem (SDP) in (G,GT) is,
given a tuple of elements (gz , gr, hz , hu) ∈R G4, to find a non-trivial triple (z, r, u) ∈
G3\{(1G, 1G, 1G)} such that e(gz , z) · e(gr, r) = 1GT and e(hz , z) · e(hu, u) = 1GT .

3 Constructions of Linearly Homomorphic Structure-Preserving

Signatures

As a warm-up, we begin by describing a one-time homomorphic signature, where
a given public key allows signing only one linear subspace.

3.1 A One-Time Linearly Homomorphic Construction

In the description hereunder, since only one linear subspace can be signed for each
public key, no file identifier τ is used. We thus set τ to be the empty string ε in
all algorithms.

Keygen(λ, n): given a security parameter λ and the dimension n ∈ N of the sub-
space to be signed, choose bilinear group (G,GT) of prime order p > 2λ. Then,

choose generators h, gz , gr, hz
R← G. Pick χi, γi, δi

R← Zp, for i = 1 to n. Then,
for each i ∈ {1, . . . , n}, compute gi = gχiz gγir , hi = hχiz h

δi . The private key is
sk = {χi, γi, δi}ni=1 while the public key is defined to be

pk =
(
gz , gr, hz , h, {gi, hi}ni=1

)
∈ G2n+4 .

Sign(sk, τ, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn associated with
the identifier τ = ε using sk = {χi, γi, δi}ni=1, compute the signature consists of
σ = (z, r, u) ∈ G3, where

z =
n∏
i=1

M−χii , r =
n∏
i=1

M−γii , u =
n∏
i=1

M−δii .

SignDerive(pk, τ, {(ωi, σ
(i))}`i=1): given the public key pk, a file identifier τ = ε

and ` tuples (ωi, σ
(i)), parse each signature σ(i) as σ(i) =

(
zi, ri, ui

)
∈ G3

for i = 1 to `. Compute and return the derived signature σ = (z, r, u) =(∏`
i=1 z

ωi
i ,
∏`
i=1 r

ωi
i ,
∏`
i=1 u

ωi
i

)
.

Verify(pk, σ, τ, (M1, . . . ,Mn)): given a signature σ = (z, r, u) ∈ G3, a vector
(M1, . . . ,Mn) and a file identifier τ = ε, return 1 if and only if (M1, . . . ,Mn) 6=
(1G, . . . , 1G) and (z, r, u) satisfy

1GT = e(gz , z)·e(gr, r)·
n∏
i=1

e(gi,Mi) and 1GT = e(hz , z)·e(h, u)·
n∏
i=1

e(hi,Mi) .

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 9

The proof of security relies on the fact that, while the signing algorithm is
deterministic, signatures are not unique. However, the reduction will be able to
compute exactly one signature for each vector. At the same time, an adversary has
no information about which specific signature the legitimate signer would compute
on a vector outside the span of already signed vectors. Moreover, by obtaining two
distinct signatures on a given vector, the reduction can solve a given SDP instance.

Theorem 1 The scheme is unforgeable if the SDP assumption holds in (G,GT).

Proof We describe an algorithm B that takes as input an SDP instance (gz , gr, hz ,
h) ∈ G4 and uses a forger A to find a triple (z, r, u) such that e(gz , z) · e(gr, r) =
e(hz , z) · e(h, u) = 1GT .

To this end, B honestly runs the key generation algorithm using randomly cho-
sen {(χi, γi, δi)}ni=1. Whenever A requests a signature on a vector (M1, . . . ,Mn) ∈
Gn, B faithfully follows the specification of the signing algorithm. The game ends
with the adversary A outputting a vector (M?

1 , . . . ,M
?
n) with a valid signature

(z?, r?, u?). At this point, B computes its own signature

(z†, r†, u†) = (
n∏
i=1

M?
i
−χi ,

n∏
i=1

M?
i
−γi ,

n∏
i=1

M?
i
−δi) (1)

on (M?
1 , . . . ,M

?
n). We claim that, with overwhelming probability, (z‡, r‡, u‡) =

(z
?

/z†, r
?

/r†, u
?

/u†) is a non-trivial solution to the SDP instance.
To see this, we first note that a given public key has exponentially many cor-

responding private keys and pk perfectly hides the vector (χ1, . . . , χn). Moreover,
for a given pk, each message (M1, . . . ,Mn) has an exponential number of valid sig-
natures but the one produced by the signing algorithm is completely determined
by (χ1, . . . , χn). We will see that, in A’s view, guessing the value z† of (1) amounts
to inferring which vector (χ1, . . . , χn) the reduction B is using.

Throughout the game, A obtains signatures {(zi, ri, ui)}n−1
i=1 on at most n − 1

linearly independent vectors of Gn. If we consider discrete logarithms, these signa-
tures only provide A with n− 1 linearly independent equations because, for each
triple (zi, ri, ui), zi uniquely determines (ri, ui). Taking into account the informa-
tion revealed by {(gi, hi)}ni=1, we find that an unbounded adversary is presented
with 3n − 1 linear equations in 3n unknowns. In A’s view, since (M?

1 , . . . ,M
?
n)

must be independent of previously signed vectors, predicting z† is only possible
with probability 1/p. With probability 1−1/p, we thus have z† 6= z?, in which case
(z‡, r‡, u‡) solves the SDP instance because (z†, r†, u†) and (z?, r?, u?) both satisfy
the verification equations. ut

The scheme can be modified so as to work in asymmetric pairing configurations
and the Double Pairing assumption [6]. However, we need to work with the SDP
assumption in the next section.

3.2 A Full-Fledged Linearly Homomorphic SPS Scheme

Here, we upgrade our one-time construction to obtain a scheme allowing us to
sign an arbitrary number of linear subspaces. Here, each file identifier τ consists
of a L-bit string. The construction builds on the observation that, in the scheme

10 Benôıt Libert et al.

of Section 3.1, signatures (z, r, u) could be re-randomized by computing (z · gθr , r ·
g−θz , u · h− logh(gr)·θ

z), with θ
R← Zp, if h

− logh(gr)
z were available. Since publicizing

h
− logh(gr)
z would render the scheme insecure, our idea is to use Waters signatures

as a support for introducing extra randomizers in the exponent.
In the construction, the u component of each signature can be seen as an

aggregation of the one-time signature of Section 3.1 with a Waters signature

(h
logh(gr)
z ·HG(τ)−ρ, hρ) [67] on the tag τ .

Keygen(λ, n): given a security parameter λ and the dimension n ∈ N of the sub-
space to be signed, choose bilinear group (G,GT) of prime order p > 2λ. Then,
conduct the following steps.

1. Choose h
R← G and αz , αr, βz

R← Zp. Define gz = hαz , gr = hαr and hz = hβz .

2. For i = 1 to n, pick χi, γi, δi
R← Zp and compute gi = gχiz gγir , hi = hχiz h

δi .

3. Choose a random vector w = (w0, w1, . . . , wL)
R← GL+1. The latter defines

a hash function HG : {0, 1}L → G which maps τ = τ [1] . . . τ [L] ∈ {0, 1}L to

HG(τ) = w0 ·
∏L
k=1 w

τ [k]
k .

The private key is sk =
(
hαrz , {χi, γi, δi}ni=1

)
while the public key consists of

pk =
(
gz , gr, hz , h, {gi, hi}ni=1, w

)
∈ G2n+4 ×GL+1 .

Sign(sk, τ, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn w.r.t. the file

identifier τ using sk =
(
hαrz , {χi, γi, δi}ni=1

)
, choose θ, ρ

R← Zp and output

σ = (z, r, u, v) ∈ G4, where

z = gθr ·
n∏
i=1

M−χii , r = g−θz ·
n∏
i=1

M−γii ,

u = (hαrz)−θ ·
n∏
i=1

M−δii ·HG(τ)−ρ , v = hρ .

SignDerive(pk, τ, {(ωi, σ
(i))}`i=1): given pk, a file identifier τ and ` tuples (ωi, σ

(i)),

parse σ(i) as σ(i) =
(
zi, ri, ui, vi

)
∈ G4 for i = 1 to `. Then, choose ρ′

R← Zp
and compute and return σ = (z, r, u, v), where z =

∏`
i=1 z

ωi
i , r =

∏`
i=1 r

ωi
i ,

u =
∏`
i=1 u

ωi
i ·HG(τ)−ρ

′
and v =

∏`
i=1 v

ωi
i · h

ρ′ .
Verify(pk, σ, τ, (M1, . . . ,Mn)): given a signature σ = (z, r, u, v) ∈ G4, a file iden-

tifier τ and a vector (M1, . . . ,Mn), return 1 if and only if (M1, . . . ,Mn) 6=
(1G, . . . , 1G) and (z, r, u, v) satisfy

1GT = e(gz , z) · e(gr, r) ·
n∏
i=1

e(gi,Mi) and

1GT = e(hz , z) · e(h, u) · e(HG(τ), v) ·
n∏
i=1

e(hi,Mi) . (2)

The security of the scheme against non-independent Type I adversaries is proved
under the SDP assumption. In the case of Type II forgeries, we need to assume
the adversary to be independent because, at some point, the simulator is only able
to compute a signature for a unique value3 of θ.

3 Note that this is not a problem since the signer can derive θ as a pseudorandom function
of τ and (M1, . . . ,Mn) to make sure that a given vector is always signed using the same θ.

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 11

Theorem 2 The scheme is unforgeable against independent adversaries if the SDP

assumption holds in (G,GT). Moreover, the scheme is secure against non-independent

Type I adversaries.

Proof The result is proved by separately considering Type I and Type II forgeries.
For simplicity, we first consider Type II adversaries as the case of Type I attacks
will be simpler. Lemmas 1 and 2 show how to build an algorithm solving the SDP
problem either way. ut

The proof of Lemma 1 uses Waters signatures as a handle to randomize signa-
tures. Specifically, whenever the reduction is able to compute a Waters signature
(hαrz ·HG(τ)−ρ, hρ) on the tag τ , it can inject a fresh extra randomizer θ ∈ Zp in the
exponent for each vector associated with τ . By doing so, with non-negligible proba-
bility, the specific vector (χ1, . . . , χn) used by the reduction will remain completely
undetermined from A’s view.

More formally, we will prove the result by separately considering Type I and
Type II adversaries. For convenience, we will first consider Type II attacks since
it will ease the explanation of the Type I case.

Lemma 1 For any Type II independent forger A, there exists an algorithm B solving

the SDP problem such that Adv(A) ≤ 8 · q · (L + 1) ·
(
AdvSDP(B) + 1

p

)
, where q

is the number of distinct tags appearing in signing queries. (The proof is given in
Appendix A.1).

The following lemma shows the security of the scheme against Type I adver-
saries, even if their queries are non-independent. This property is important for the
application to the construction of non-malleable commitments to group elements,
where it will make it possible to commit to arbitrary vectors of group elements.

Lemma 2 A Type I forger A implies an algorithm B solving the SDP problem with

non-negligible advantage. More precisely, we have Adv(A) ≤ 8·q·(L+1)·
(
AdvSDP(B)+

1
p), where q is the number of distinct tags occurring in signing queries. Moreover, the

statement holds even for non-independent adversaries. (The proof is given in Ap-
pendix A.2).

Since the signature component u cannot be publicly randomized, the scheme
does not have fully randomizable signatures. In Appendix B, we describe a fully
randomizable variant. In applications like non-malleable commitments to group
elements, the above scheme is sufficient however.

4 Applications

4.1 Verifiable Computation for Encrypted Cloud Storage

Linearly homomorphic schemes are known (see, e.g., [8]) to provide verifiable com-
putation mechanisms for outsourced data. Suppose that a user has a dataset
consisting of n samples s1, . . . , sn ∈ Zp. The dataset can be encoded as vec-
tors ~vi = (~ei|si) ∈ Zn+1

p , where ~ei ∈ Znp denotes the i-th unit vector for each
i ∈ {1, . . . , n}. The user then assigns a file identifier τ to {~vi}ni=1, computes sig-
natures σi ← Sign(sk, τ, ~vi) on the resulting vectors and stores {(~vi, σi)}ni=1 at the

12 Benôıt Libert et al.

server. When requested, the server can then evaluate a sum s =
∑n
i=1 si and pro-

vide evidence that the latter computation is correct by deriving a signature on the
vector (1, 1, . . . , 1, s) ∈ Zn+1

p . Unless the server is able to forge a signature for a
vector outside the span of {~vi}ni=1, it is unable to fool the user. The above method
readily extends to authenticate weighted sums or Fourier transforms.

One disadvantage of the above method is that it requires the server to retain
the dataset {si}ni=1 in the clear. Using linearly homomorphic structure-preserving
signatures, the user can apply the above technique on encrypted samples using the
Boneh-Boyen-Shacham (BBS) cryptosystem [16].

The BBS cryptosystem involves a public key (g, g̃, f = gx, h = gy) ∈R G4, where
(x, y) ∈ Z2

p is the private key. The user (or anyone else knowing his public key) can
first encrypt his samples {si}ni=1 by computing BBS encryptions (C1,i, C2,i, C3,i) =

(f li , hti , g̃si · gli+ti), with li, ti
R← Zp, for each i ∈ {1, . . . , n}. If the user holds a

linearly homomorphic structure-preserving signature key pair for vectors of di-
mension n+3, he can generate n structure-preserving signatures on vectors ((C1,i,

C2,i, C3,i)| ~Ei) ∈ Gn+3, where ~Ei = (1G, . . . , 1G, g, 1G, . . . , 1G) = g~ei for each i ∈
{1, . . . , n}, using the scheme of Section 3.2. The vectors {((C1,i, C2,i, C3,i)| ~Ei)}ni=1

and their signatures {(zi, ri, ui, vi)}ni=1 are then archived in the cloud in such a way
that the server can publicly derive a signature on the vector

(
f
∑
i li , h

∑
i ti , g̃

∑
i si ·

g
∑
i(li+ti), g, g, . . . , g

)
∈ Gn+3 in order to convince the client that the encrypted

sum was correctly computed. Using his private key (x, y), the client can then re-
trieve the sum

∑
i si as long as it remains in a sufficiently small range.

The interest of the above solution lies in that the client can dispense with the
need for storing the O(n)-size public key of his linearly homomorphic signature.
Indeed, he can simply retain the random seed that was used to generate pk and
re-compute private key elements {(χi, γi, δi)}ni=1 whenever he wants to verify the
server’s response. In this case, the verification equations (2) become

1GT = e(gz , z ·
n∏
i=1

Mχi
i) · e(gr, r ·

n∏
i=1

Mγi
i) =

e(hz , z ·
n∏
i=1

Mχi
i) · e(h, u ·

n∏
i=1

Mδi
i) · e(HG(τ), v) ,

so that the client only has to compute O(1) pairings. Moreover, the client does
not have to determine an upper bound on the size of his dataset when generating
his public key. Initially, he only needs to generate {(gj , hj)}3j=1. When the i-th
ciphertext (C1,i, C2,i, C3,i) has to be stored, the client derives (χi+3, γi+3, δi+3)
and (gi+3, hi+3) by applying a PRF to the index i. This will be sufficient to sign
vectors of the form ((C1,i, C2,i, C3,i)| ~Ei).

In order to hide all partial information about the original dataset, the server
may want to re-randomize the derived signature and ciphertext before returning
them. This can be achieved by having the client include signatures on the vectors
(f, 1G, g, 1G, . . . , 1G), (1G, h, g, 1G, . . . , 1G) in the outsourced dataset. Note that, in
this case, the signature should be re-randomized as well. For this reason, our
randomizable scheme described in Appendix B should be preferred.

Complete and careful security models for “verifiable computation on encrypted
data” are beyond the scope of this paper. Here, they would naturally combine

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 13

the properties of secure homomorphic encryption and authenticated computing.
It should be intuitively clear that a malicious server cannot trick a client into
accepting an incorrect result (i.e., one which differs from the actual defined linear
function it is supposed to compute over the defined signed ciphertext inputs)
without defeating the security of the underlying homomorphic signature.

4.2 Extension to CCA1-Encrypted Data

In the application of Section 4.1, the underlying crypotosystem has to be addi-
tively homomorphic, which prevents it from being secure against adaptive chosen-
ciphertext attacks. On the other hand, the method is compatible with security
against non-adaptive chosen-ciphertext attacks. One possibility is to apply the
“lite” Cramer-Shoup technique (in its variant based on DLIN) as it achieves CCA1-
security while remaining homomorphic. Unfortunately, the validity of ciphertexts
is not publicly verifiable, which may be annoying in applications like cloud storage
or universally verifiable e-voting systems. Indeed, servers may be willing to have
guarantees that they are actually storing encryptions of some message instead of
random group elements.

Consider the cryptosystem where ciphertexts (C1, C2, C3, C4) = (f l, ht, gl+t, g̃m·
Xl

1 ·Xt
2) are decrypted as m = logg̃(C4 · C−x1

1 C−x2
2 C−w3), where X1 = fx1gw and

X2 = hx2gw are part of the public key. In [60], such a system was made chosen-
ciphertext secure using a publicly verifiable one-time simulation-sound proof that
(f, h, g, C1, C2, C3) forms a DLIN tuple. In the security proof, if the reduction is
guaranteed not to leak C−x1

1 C−x2
2 C−w3 for an invalid triple (C1, C2, C3) (i.e., as

long as the adversary is unable to generate a fake proof for this), the private key
component w will remain perfectly hidden. Consequently, if the challenge cipher-
text is computed by choosing C?3 ∈R G (so that (f, h, g, C?1 , C

?
2 , C

?
3) is not a DLIN

tuple) and computing C?4 = g̃m ·C?1
x1 ·C?2

x2 ·C?3
w, the plaintext m is independent

of A’s view. If we replace the one-time simulation-sound proofs by standard proofs
of membership in the scheme of [60], we obtain a CCA1 homomorphic encryption
scheme. Linearly homomorphic SPS schemes provide a simple and efficient way to
do that.

The idea is to include in the public key the verification key of a one-time lin-
early homomorphic SPS —using the scheme of Section 3.1— for n = 3 as well as
signatures on the vectors (f, 1G, g), (1G, h, g) ∈ G3. This will allow the sender to
publicly derive a signature (z, r, u) on the vector (C1, C2, C3) = (f l, ht, gl+t). Each
ciphertext thus consists of (z, r, u, C1, C2, C3, C4). In the security proof, at each
pre-challenge decryption query, the signature (z, r, u) serves as publicly verifiable
evidence that (f, h, g, C1, C2, C3) is a DLIN tuple. In the challenge phase, the reduc-
tion reveals another homomorphic signature (z?, r?, u?) for a vector (C?1 , C

?
2 , C

?
3)

that may be outside the span of (f, 1G, g) and (1G, h, g) but it does not matter
since decryption queries are no longer allowed beyond this point.

We note that linearly homomorphic SPS can also be used to construct CCA1-
secure homomorphic encryption schemes based on the Naor-Yung paradigm [63]
in the standard model.

14 Benôıt Libert et al.

5 Non-Malleable Trapdoor Commitments to Group Elements from

Linearly Homomorphic Structure-Preserving Signatures

As noted in [47,48], some applications require to commit to group elements with-
out knowing their discrete logarithms or destroying their algebraic structure by
hashing them first. This section shows that, under a certain mild condition, lin-
early homomorphic SPS imply length-reducing non-malleable structure-preserving
commitments to vectors of group elements. The mild condition – which is satisfied
by our constructions – is simply that any non-trivial vector has a valid signature.

As a result, we obtain the first length-reducing non-malleable structure-pre-
serving trapdoor commitment. Our scheme is not strictly4 structure-preserving
(according to the terminology of [7]) because the commitment string lives in GT
rather than G. Still, openings only consist of elements in G, which makes it possible
to generate efficient NIWI proofs that committed group elements satisfy certain
properties. To our knowledge, the only known non-malleable commitment schemes
whose openings only consist of group elements were described by Fischlin et al. [37].
However, these constructions cannot be length-reducing as they achieve universal
composability [23,25].

Our schemes are obtained by first constructing simulation-sound trapdoor com-
mitments (SSTC) [41,61] to group elements. SSTC schemes were first suggested by
Garay, MacKenzie and Yang [41] as a tool for constructing universally composable
zero-knowledge proofs [23]. MacKenzie and Yang subsequently gave a simplified se-
curity definition which suffices to provide non-malleability with respect to opening
in the sense of the definition of re-usable non-malleable commitments [32].

In a SSTC, each commitment is labeled with a tag. The definition of [61] re-
quires that, even if the adversary can see equivocations of commitments to possibly
distinct messages for several tags tag1, . . . , tagq, it will not be able to break the
binding property for a new tag tag 6∈ {tag1, . . . , tagq}.

Definition 5 ([61]) A simulation-sound trapdoor commitment (Setup,Com,FakeCom,
FakeOpen, Verify) is a tuple where (Setup,Com,Verify) forms a commitment scheme
and (FakeCom,FakeOpen) are PPT algorithms with the following properties

Trapdoor: for any tag and any message Msg, the following distributions are com-
putationally indistinguishable:

Dfake := {(pk, tk)← Setup(λ); (c̃om, aux)← FakeCom(pk, tk, tag);

d̃ec← FakeOpen(aux, tk, c̃om,Msg) : (pk, tag ,Msg, c̃om, d̃ec)}

and

Dreal := {(pk, tk)← Setup(λ); (com, dec)← Com(pk, tag,Msg) :

(pk, tag,Msg, com, dec)} .

4 We recall that strictly structure-preserving commitments cannot be length-reducing, as
shown by Abe et al. [7], so that our scheme is essentially the best we can hope for if we aim
at short commitment stings.

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 15

Simulation-sound binding: for any PPT adversary A, the following probability is
negligible

Pr[(pk, tk)← Setup(λ); (com, tag,Msg1,Msg2, dec1, dec2)← AOtk,pk(pk) :

Verify(pk, tag ,Msg1, com, dec1) = Verify(pk, tag ,Msg2, com, dec2) = 1 ∧
Msg1 6= Msg2 ∧ tag /∈ Q] ,

where Otk,pk is an oracle that maintains an initially empty set Q and operates
as follows:
– On input (commit, tag), it runs (c̃om, aux) ← FakeCom(pk, tk, tag), stores

(c̃om, tag , aux), returns c̃om and adds tag in Q.
– On input (decommit, c̃om,Msg): if a tuple (c̃om, tag , aux) was previously stored,

it computes d̃ec ← FakeOpen(aux, tk, tag , c̃om,Msg) and returns d̃ec. Other-
wise, Otk,pk returns ⊥.

While our SSTC to group elements will be proved secure in the above sense, a
non-adaptive flavor of simulation-sound binding security is sufficient for the con-
struction of non-malleable commitments. Indeed, Gennaro used [42] such a relaxed
notion to achieve non-malleability from similar-looking multi-trapdoor commit-
ments. In the non-adaptive notion, the adversary has to choose the set of tags
tag1, . . . , tag` for which it wants to query the Otk,pk oracle before seeing the public
key pk.

5.1 Template of Linearly Homomorphic SPS Scheme

We first remark that any constant-size linearly homomorphic structure-preserving
signature necessarily complies with the template below. Indeed, in order to have a
linear homomorphism, each verification equation necessarily computes a product
of pairings which should equal 1GT in a valid signature. In each pairing of the
product, one of the arguments must be a message or signature component while
the second argument is either part of the public key or an encoding of the file
identifier. (Note that pairing two signature components together would not be
compatible with the linear homomorphism).

For simplicity, the template is described in terms of symmetric pairings but
generalizations to asymmetric configurations are possible.

Keygen(λ, n): given λ and the dimension n ∈ N of the vectors to be signed,
choose constants nz , nv,m. Among these, nz and nv will determine the sig-
nature length while m will be the number of verification equations. Then,
choose {Fj,µ}j∈{1,...,m},µ∈{1,...,nz}, {Gj,i}j∈{1,...,m}, i∈{1,...,n} in the group G.

The public key is pk =
(
{Fj,µ}j∈{1,...,m},µ∈{1,...,nz}, {Gj,i}j∈{1,...,m}, i∈{1,...,n}

)
while sk contains information about the representation of public elements w.r.t.
specific bases.

Sign(sk, τ, (M1, . . . ,Mn)): outputs σ =
(
Z1, . . . , Znz , V1, . . . , Vnv

)
∈ Gnz+nv .

SignDerive(pk, τ, {(ωi, σ
(i))}`i=1): parses each σ(i) as

(
Z

(i)
1 , . . . , Z

(i)
nz , V

(i)
1 , . . . , V

(i)
nv

)
and computes

Zµ =
∏̀
i=1

Z
(i)
µ

ωi
, Vν =

∏̀
i=1

V
(i)
ν

ωi
, µ ∈ {1, . . . , nz}, ν ∈ {1, . . . , nv} .

16 Benôıt Libert et al.

After a possible extra re-randomization step, it outputs
(
Z1, . . . , Znz , V1, . . . ,

Vnv
)
.

Verify(pk, σ, τ, (M1, . . . ,Mn)): given a signature σ =
(
Z1, . . . , Znz , V1, . . . , Vnv

)
∈

Gnz+nv , a tag τ and (M1, . . . ,Mn), return 0 if (M1, . . . ,Mn) = (1G, . . . , 1G).
Otherwise, do the following.
1. For each j ∈ {1, . . . ,m} and ν ∈ {1, . . . , nv}, compute one-to-one5 encodings

Tj,ν ∈ G of the tag τ as a group element.
2. Return 1 if and only if cj = 1GT for j = 1 to m, where

cj =

nz∏
µ=1

e(Fj,µ, Zµ)·
nv∏
ν=1

e(Tj,ν , Vν)·
n∏
i=1

e(Gj,i,Mi) j ∈ {1, . . . ,m} . (3)

In the following, we say that a linearly homomorphic SPS is regular if, for each
file identifier τ , any non-trivial vector (M1, . . . ,Mn) 6= (1G, . . . , 1G) has a valid
signature.

5.2 Construction of Simulation-Sound Structure-Preserving Trapdoor
Commitments

Let ΠSPS = (Keygen, Sign, SignDerive,Verify) be a linearly homomorphic SPS. We
construct a simulation-sound trapdoor commitment as follows.

SSTC.Setup(λ, n): given the desired dimension n ∈ N of committed vectors, choose
public parameters pp for the linearly homomorphic SPS scheme. Then, run
ΠSPS.Keygen(λ, n) to obtain a public key pk =

(
{Fj,µ}j∈{1,...,m},µ∈{1,...,nz},

{Gj,i}j∈{1,...,m}, i∈{1,...,n}
)
, for some constants nz , nv,m, and a sk. The com-

mitment key is pk = pk and the trapdoor tk consists of sk. Note that the public
key defines a signature space Gnz+nv , for constants nz and nv.

SSTC.Com(pk, tag , (M1, . . . ,Mn)): to commit to (M1, . . . ,Mn) ∈ Gn with re-

spect to the tag tag = τ , choose
(
Z1, . . . , Znz , V1, . . . , Vnv

) R← Gnz+nv in the
signature space. Then, run Step 1 of the verification algorithm and evaluate
the right-hand-side member of (3). Namely, compute

cj =

nz∏
µ=1

e(Fj,µ, Zµ) ·
nv∏
ν=1

e(Tj,ν , Vν) ·
n∏
i=1

e(Gj,i,Mi) , j ∈ {1, . . . ,m} (4)

where {Tj,ν}j,ν form an injective encoding of tag = τ as a set of group elements.
The commitment string is com = (c1, . . . , cm) whereas the decommitment is
dec =

(
Z1, . . . , Znz , V1, . . . , Vnv

)
.

SSTC.FakeCom(pk, tk, tag): proceeds like SSTC.Com with (M̂1, . . . , M̂n)
R← Gn. If

(ˆcom, d̂ec) denotes the resulting pair, the algorithm outputs c̃om = ˆcom and the
auxiliary information aux, which consists of the pair aux = ((M̂1, . . . , M̂n), d̂ec)
for tag = τ .

5 This condition can be relaxed to have collision-resistant deterministic encodings. Here, we
assume injectivity for simplicity.

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 17

SSTC.FakeOpen(aux, tk, tag , c̃om, (M1, . . . ,Mn)): the algorithm parses c̃om as
(c̃1, . . . , c̃m) and aux as

(
(M̂1, . . . , M̂n), (Ẑ1, . . . , Ẑnz , V̂1, . . . , V̂nv)

)
. It first gener-

ates a linearly homomorphic signature on (M1/M̂1, . . . ,Mn/M̂n) for the tag
tag = τ . Namely, using the trapdoor tk = sk, compute a signature σ′ =
(Z′1, . . . , Z

′
nz , V

′
1 , . . . , V

′
nv)← ΠSPS.Sign

(
sk, τ, (M1/M̂n, . . . ,Mn/M̂n)

)
. Since σ′ is

a valid signature and aux =
(
(M̂1, . . . , M̂n), (Ẑ1, . . . , Ẑnz , V̂1, . . . , V̂nv)

)
satisfies

c̃j =

nz∏
µ=1

e(Fj,µ, Ẑµ) ·
nv∏
ν=1

e(Tj,ν , V̂ν) ·
n∏
i=1

e(Gj,i, M̂i) , j ∈ {1, . . . ,m} , (5)

the fake opening algorithm can run (Z̃1, . . . , Z̃nz , Ṽ1, . . . , Ṽnv)← SignDerive(pk, τ,

{(1, σ′), (1, σ̂)}), where σ̂ = (Ẑ1, . . . , Ẑnz , V̂1, . . . , V̂nv), and output d̃ec = (Z̃1,

. . . , Z̃nz , Ṽ1, . . . , Ṽnv) which is a valid de-commitment to the vector (M1, . . . ,Mn)
with respect to tag = τ .

SSTC.Verify(pk, tag , (M1, . . . ,Mn), com, dec): parse com as (c1, . . . , cm) ∈ GmT
and the de-commitment dec as

(
Z1, . . . , Znz , V1, . . . , Vnv

)
∈ Gnz+nv (if these

values do not parse properly, return 0). Then, compute a one-to-one encoding
{Tj,ν}j,ν of tag = τ . Return 1 if relations (4) hold and 0 otherwise.

In Appendix E, we extend the above construction so as to build simulation-
sound trapdoor commitment to vectors from any linearly homomorphic signature
that fits a certain template. As a result, we obtain a modular construction of
constant-size non-malleable commitment to vectors which preserves the feasibility
of efficiently proving properties about committed values.

Theorem 3 Assuming that the underlying linearly homomorphic SPS is regular and

secure against non-independent Type I adversaries, the above construction is a simula-

tion-sound trapdoor commitment to group elements. (The proof is given in Appendix
D).

A standard technique (see, e.g., [41,42]) to construct a re-usable non-malleable
commitment from a SSTC scheme is as follows. To commit to Msg, the sender
generates a key-pair (VK, sk) for a one-time signature and generates (com, dec) ←
SSTC.Commit(pk,VK,MSg) using VK as a tag. The non-malleable commitment
string is the pair (com,VK) and the opening is given by (dec, σ), where σ is a
one-time signature on com, so that the receiver additionally checks the validity
of σ. This construction is known to provide independence (see Definition 8 in Ap-
pendix C) and thus non-malleability with respect to opening, as proved in [34,
45].

In our setting, we cannot compute σ as a signature of com, as it consists of
GT elements. However, we can rather sign the pair (Msg, dec) —whose compo-
nents live in G— as long as it uniquely determines com. To this end, we can use
the one-time structure-preserving signature of [6, Appendix C.1] since it allows
signing messages of arbitrary length using a constant-size one-time public key.
Like our scheme of Section 3.2, it relies on the SDP assumption and thus yields a
non-malleable commitment based on this sole assumption. Alternatively, we can
move σ in the commitment string (which thus consists of (com,VK, σ)), in which
case the one-time signature does not need to be structure-preserving but it has
to be strongly unforgeable (as can be observed from the definition of independent
commitments [34] recalled in Appendix C) while the standard notion of unforge-
ability suffices in the former case.

18 Benôıt Libert et al.

Acknowledgments

The authors thank Dario Catalano for his comments and for pointing a necessary
correction in the proof of Lemma 1.

References

1. M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, M. Ohkubo. Constant-size
structure-preserving signatures: Generic constructions and simple assumptions. In Asi-
acrypt ’12, LNCS 7658, pp. 4–24, Springer, 2012.

2. M. Abe, B. David, M. Kohlweiss, R. Nishimaki, M. Ohkubo. Tagged one-time signatures:
Tight security and optimal tag size. In PKC ’13, LNCS 7778, pp. 312–331, Springer, 2013.

3. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, M. Ohkubo. Structure-preserving
signatures and commitments to group elements. In Crypto ’10, LNCS 6223, pp. 209–236,
Springer, 2010.

4. M. Abe, J. Groth, K. Haralambiev, M. Ohkubo. Optimal structure-preserving signatures
in asymmetric bilinear groups. In Crypto ’11, LNCS 6841, pp. 649–666, Springer, 2011.

5. M. Abe, J. Groth, M. Ohkubo. Separating short structure-preserving signatures from
non-interactive assumptions. In Asiacrypt ’11, LNCS 7073, pp. 628–646, Springer, 2011.

6. M. Abe, K. Haralambiev, M. Ohkubo. Signing on elements in bilinear groups for modular
protocol design. Cryptology ePrint Archive: Report 2010/133, 2010.

7. M. Abe, K. Haralambiev, M. Ohkubo. Group to group commitments do not shrink. In
Eurocrypt ’12, LNCS 7237, pp. 301–317, Springer, 2012.

8. J.-H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, a. shelat, B. Waters. Computing on
authenticated data. In TCC 2012, LNCS 7194, pp. 1–20, Springer, 2012.

9. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, D. Song.
Provable data possession at untrusted stores. In ACM-CCS 2007, pp. 598–609, ACM
Press, 2007.

10. G. Ateniese, S. Kamara, J. Katz. Proofs of storage from homomorphic identification
protocols. In Asiacrypt ’09, LNCS 5912, pp. 319–333, Springer, 2009.

11. N. Attrapadung, B. Libert. Homomorphic network coding signatures in the standard
model. In PKC ’11, LNCS 6571, pp. 17–34, Springer, 2011.

12. N. Attrapadung, B. Libert, T. Peters. Computing on authenticated data: New privacy
definitions and constructions. In Asiacrypt ’12, LNCS 7658, pp. 367–385, Springer, 2012.

13. N. Attrapadung, B. Libert, T. Peters. Efficient completely context-hiding quotable signa-
tures and linearly homomorphic signatures. In PKC ’13, LNCS 7778, pp. 367–385, pp. 386–
404, Springer, 2013.

14. M. Bellare, T. Ristenpart. Simulation without the artificial abort: simplified proof and
improved concrete security for Waters’ IBE scheme. In Eurocrypt ’09, LNCS 5479, pp.
407–424, Springer, 2009.

15. D. Boneh and X. Boyen. Short signatures without random oracles. In Eurocrypt ’04,
LNCS 3027, pages 56–73, Springer, 2004.

16. D. Boneh, X. Boyen, H. Shacham. Short group signatures. In Crypto ’04, LNCS 3152, pp.
41–55, Springer, 2004.

17. D. Boneh, D. Freeman. Linearly homomorphic signatures over binary fields and new tools
for lattice-based signatures. In PKC ’11, LNCS 6571, pp. 1–16, Springer, 2011.

18. D. Boneh, D. Freeman. Homomorphic signatures for polynomial functions. In Euro-
crypt ’11, LNCS 6632, pp. 149–168, Springer, 2011.

19. D. Boneh, D. Freeman, J. Katz, B. Waters. Signing a linear subspace: Signature schemes
for network coding. In PKC ’09, LNCS 5443, pp. 68–87, Springer, 2009.

20. J. Camenisch, M. Dubovitskaya, K. Haralambiev. Efficient structure-preserving sig-
nature scheme from standard assumptions. In Security and Cryptography for Networks
(SCN 2012), LNCS 7485, pp. 76–94, Springer, 2012.

21. J. Camenisch, T. Gross, T.-S. Heydt-Benjamin. Rethinking accountable privacy support-
ing services. In Digital Identity Management 2008 (DIM ’08), pp. 1–8, ACM Press, 2008.

22. J. Camenisch, K. Haralambiev, M. Kohlweiss, J. Lapon, V. Naessens. Structure preserv-
ing CCA secure encryption and applications. In Asiacrypt ’11, LNCS 7073, pp. 89–106,
Springer, 2011.

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 19

23. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS ’01 pp. 136–145, Springer, IEEE Press, 2001.

24. R. Canetti, Y. Dodis, R. Pass, S. Walfish. Universally composable security with global
setup. In TCC ’07, LNCS 4392, pp. 61–85, Springer, 2007.

25. R. Canetti, M. Fischlin. Universally composable commitments. In Crypto ’01, LNCS 2139,
pp. 19–40, Springer, 2001.

26. D. Catalano, D. Fiore, B. Warinschi. Adaptive pseudo-free groups and applications. In
Eurocrypt ’11, LNCS 6632, pp. 207–223, Springer, 2011.

27. D. Catalano, D. Fiore, B. Warinschi. Efficient network coding signatures in the standard
model. In PKC ’12, LNCS 7293, pp. 680–696, Springer, 2012.

28. D. Catalano, A. Marcedone, O. Puglisi. Authenticated computation on groups: New homo-
morphic primitives and applications. In Asiacrypt ’14, LNCS 8874, Part II, pp. 193–212,
Springer, 2014.

29. J. Cathalo, B. Libert, M. Yung. Group encryption: Non-interactive realization in the stan-
dard model. In Asiacrypt ’09, LNCS 5912, pp. 179–196, Springer, 2009.

30. M. Chase, M. Kohlweiss. A new hash-and-sign approach and structure-preserving signa-
tures from DLIN. In Security and Cryptography for Networks (SCN 2012), LNCS 7485,
pp. 131–148, Springer, 2012.

31. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Crypto ’98, LNCS 1462, pages 13–25, Springer, 1998.

32. I. Damg̊ard, J. Groth. Non-interactive and reusable non-malleable commitment schemes.
In STOC ’03, pages 426–437, ACM Press, 2003.

33. Y. Desmedt. Computer security by redefining what a computer is. In New Security
Paradigms Workshop (NSPW) 1993, pp. 160–166, 1993.

34. G. Di Crescenzo, Y. Ishai, R. Ostrovsky. Non-interactive and non-malleable commitment.
In STOC ’98, pp. 141–150, ACM Press, 1998.

35. Y. Dodis, V. Shoup, S. Walfish. Efficient constructions of composable commitments and
zero-knowledge proofs. In Crypto ’08, LNCS 5157, pp. 21–38, Springer, 2008.

36. D. Dolev, C. Dwork, M. Naor. Non-malleable cryptography. In STOC ’91, pp. 542–552,
ACM Press, 1991.

37. M. Fischlin, B. Libert, M. Manulis. Non-interactive and re-usable universally composable
string commitments with adaptive security. In Asiacrypt ’11, LNCS 7073, pp. 468–485,
Springer, 2011.

38. D. Freeman. Improved security for linearly homomorphic signatures: A generic framework.
In PKC ’12, LNCS 7293, pp. 697–714, Springer, 2012.

39. G. Fuchsbauer. Automorphic signatures in bilinear groups and an application to round-
optimal blind signatures. Cryptology ePrint Archive: Report 2009/320, 2009.

40. E. Fujisaki. New constructions of efficient simulation-sound commitments using encryption
and their applications. In CT-RSA ’12, LNCS 7178, pp. 136–155, Springer, 2012.

41. J. Garay, P. MacKenzie, K. Yang Strengthening zero-knowledge protocols using signatures.
In Eurocrypt ’03, LNCS 2656, pp. 177–194, Springer, 2003.

42. R. Gennaro. Multi-trapdoor commitments and their applications to proofs of knowledge
secure under concurrent man-in-the-middle attacks. In Crypto ’04, LNCS 3152, pp. 220–
236, Springer, 2004.

43. R. Gennaro, C. Gentry, B. Parno. Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In Crypto 2010, LNCS 6223, pp. 465–482, Springer,
2010.

44. R. Gennaro, J. Katz, H. Krawczyk, T. Rabin. Secure network coding over the integers. In
PKC ’10, LNCS 6056, pp. 142–160, Springer, 2010.

45. R. Gennaro and S. Micali. Independent zero-knowledge sets. In ICALP ’06, LNCS 4052,
pages 34–45, Springer, 2006.

46. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In Asiacrypt ’06, LNCS 4284, pp. 444–459, Springer, 2006.

47. J. Groth. Homomorphic trapdoor commitments to group elements. Cryptology ePrint
Archive: Report 2009/007, 2009.

48. J. Groth. Efficient zero-knowledge arguments from two-tiered homomorphic commitments.
In Asiacrypt ’11, LNCS 7073, pp. 431–448, Springer, 2011.

49. J. Groth, R. Ostrovsky. Cryptography in the multi-string model. In Crypto ’07, LNCS
4622, pp. 323–341, Springer, 2007.

50. J. Groth, A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Euro-
crypt ’08, LNCS 4965, pp. 415–432, Springer, 2008.

20 Benôıt Libert et al.

51. D. Hofheinz, T. Jager. Tightly secure signatures and public-key encryption. In Crypto ’12,
LNCS 7417, pp. 590–607, Springer, 2012.

52. D. Hofheinz, E. Kiltz. Programmable hash functions and their applications. In Crypto ’08,
LNCS 5157, pp. 21–38, Springer, 2008.

53. R. Johnson, D. Molnar, D. Song, D. Wagner. Homomorphic signature schemes. In CT-
RSA ’02, LNCS 2271, pp. 244–262, Springer, 2002.

54. C. Jutla, A. Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. In Asi-
acrypt ’13, LNCS 8269, pp. 1–20, Springer, 2013. Cryptology ePrint Archive: Report
2013/109, 2013.

55. C. Jutla, A. Roy. Switching lemma for bilinear tests and constant-size NIZK proofs for
linear subspaces. In Crypto ’14, LNCS 8617, pp. 295–312, Springer, 2014.

56. B. Libert, M. Joye, M. Yung. Born and raised distributively: Fully distributed non-
interactive adaptively-secure threshold signatures with short shares. In PODC ’14, pp.
303–312, ACM Press, 2014.

57. B. Libert, M. Joye, M. Yung, T. Peters. Concise multi-challenge cca-secure encryption
and signatures with almost tight security. In Asiacrypt ’14, LNCS 8874, Part II, pp. 1–21,
Springer, 2014.

58. B. Libert, T. Peters, M. Joye, M. Yung. Linearly homomorphic structure-preserving sig-
natures and their applications. In Crypto ’13, LNCS 8043, pp. 289–307, Springer, 2013.

59. B. Libert, T. Peters, M. Joye, M. Yung. Non-malleability from malleability: Simulation-
sound quasi-adaptive NIZK proofs and CCA2-secure encryption from homomorphic sig-
natures. In Eurocrypt ’14, LNCS 8441, pp. 514–532, Springer, 2014.

60. B. Libert, M. Yung. Non-interactive CCA2-secure threshold cryptosystems with adaptive
security: New framework and constructions. In TCC ’12, LNCS 7194, pp. 75–93, Springer,
2012.

61. P. MacKenzie, K. Yang. On simulation-sound trapdoor commitments. In Eurocrypt ’04,
LNCS 3027, pp. 382–400, Springer, 2004.

62. T. Malkin, I. Teranishi, Y. Vahlis, M. Yung. Signatures resilient to continual leakage on
memory and computation. In TCC ’11, pp. 89–106, Springer, 2011.

63. M. Naor, M. Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In STOC’ 90, pp. 427–437, ACM Press, 1990.

64. R. Nishimaki, E. Fujisaki, K. Tanaka. A multi-trapdoor commitment scheme from the
RSA assumption. In ACISP 2010, LNCS, 6168, pp. 182-199, Springer, 2010.

65. Y. Sakai, K. Emura, G. Hanaoka, Y. Kawai, T. Matsuda, and K. Omote. Group signa-
tures with message-dependent opening. In 5th International Conference on Pairing-Based
Cryptography (Pairing 2012), LNCS 7708, pp. 270–294, Springer, 2013.

66. A. Shamir. Identity-based cryptosystems and signature schemes. In Crypto ’84, LNCS 196,
pp. 47–53, Springer, 1984.

67. B. Waters. Efficient identity-based encryption without random oracles. In Eurocrypt ’05,
LNCS 3494, pp. 114–127, Springer, 2005.

A Deferred Proofs for the Scheme in Section 3.2

A.1 Proof of Lemma 1

Proof Let us assume that an independent adversary A can produce a Type II forgery with non-
negligible advantage ε. Using A, we build an algorithm B solving a SDP instance (gz , gr, hz , h)
with probability at least ε/(8(q − 1)(L + 1)). Algorithm B chooses (w0, w1, . . . , wL) ∈ GL+1

in the same way as in the security proof of Waters signatures [67]. Namely, for any string

τ ∈ {0, 1}L, the hash value HG(τ) = w0 ·
∏L
i=1 w

τ [i]
i can be expressed as HG(τ) = g

J(τ)
r ·hK(τ)

for certain integer-valued functions J,K : {0, 1}L → Zp that remain internal to the simulation.
They are further defined using the methodology of programmable hash functions [52] so that,
for any distinct τ, τ1, . . . , τq , we have J(τ) = 0 mod p and J(τi) 6= 0 mod p for each i ∈
{1, . . . , q} with non-negligible probability ζ = 1/(8 · q · (L+ 1)).

Remaining public key components are defined by setting gi = g
χi
z g

γi
r and hi = h

χi
z hδi ,

with χi, γi, δi
R← Zp for i = 1 to n, as in the real key generation algorithm.

Since A is a Type II forger, it is expected to produce a forgery (τ?, ~M?, σ?) for a tag τ?

that was used by B in some signing query but for which ~M? 6∈ span(~M1, . . . , ~Mn−1), where

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 21

~M1, . . . , ~Mn−1 are the vectors of Gn that were associated with τ?. We denote by τ1, . . . , τq the
distinct adversarially-chosen tags involved in A’s queries during the game. Note that, since A
is a Type II adversary, we will have τ? ∈ {τ1, . . . , τq} at the end of the game. We also assume
w.l.o.g. that exactly n − 1 signing queries are made for each tag τ ∈ {τ1, . . . , τq} during the
game (otherwise, B can simulate signing queries for itself). During its interaction with A, the
reduction B answers Sign, SignDerive and Reveal queries as follows.

Signing queries: At each signing query
(
τj , ~M = (M1, . . . ,Mn)

)
involving the j-th distinct

tag τj , B evaluates the function J(τj) and considers the following situations.

– If J(τj) 6= 0, B picks ρ, θ
R← Zp and computes

Θ1 = HG(τj)
−ρ · (hz)

K(τj)

J(τj)
·θ
·, Θ2 = hρ · (hz)

−θ
J(τj) ,

which can be written (Θ1, Θ2) =
(
h−θ·αrz · HG(τ)−ρ̃, hρ̃

)
if we define ρ̃ = ρ − θ·βz

J(τj)
.

Using (Θ1, Θ2), B obtains a valid signature on the vector (M1, . . . ,Mn) by computing

z = gθr ·
n∏
i=1

M
−χi
i , r = g−θz ·

n∏
i=1

M
−γi
i , u = Θ1 ·

n∏
i=1

M
−δi
i , v = Θ2 .

The signature σ = (z, r, u, v) is not directly sent to A but assigned to a new handle h

and stored in an entry (h, (τj , ~M), σ) of the table T .

– If J(τj) = 0, B picks ρ
R← Zp and computes

z =

n∏
i=1

M
−χi
i , r =

n∏
i=1

M
−γi
i , u = HG(τj)

−ρ ·
n∏
i=1

M
−δi
i , v = hρ ,

which corresponds to a valid signature (z, r, u, v) on (M1, . . . ,Mn) for which θ = 0.

Again, B chooses a handle h and stores
(
h, (τ, ~M), (z, r, u, v)

)
in the table T .

Derivation queries: Whenever A queries
(
(h1, . . . , hk), {βi}ki=1

)
to the SignDerive oracle, B

returns ⊥ if not all handles h1, . . . , hk correspond to queries involving τ . Otherwise, let
~M1, . . . , ~Mk be the queried vectors. If ~M ′ 6=

∏k
i=1

~M
βi
i , B returns ⊥. Otherwise, B answers

the query in the same way as the real SignDerive oracle, by updating the table T .

Reveal queries: When A supplies a handle h, B returns ⊥ if no entry of the form (h, (τ, ~M), .)

exists in T . Otherwise, B returns the previously generated signature σ and adds
(
(τ, ~M), σ)

in the list Q.

Forgery: Eventually, A outputs a Type II forgery (τ?, ~M?, σ?), where ~M? = (M?
1 , . . . ,M

?
n)

and σ? = (z?, r?, u?, v?) ∈ G4 satisfies the verification equation. At this point, B evaluates
J(τ?) and reports failure if J(τ?) 6= 0 or if the set {τ1, . . . , τq} contains at least two
tags τj1 , τj2 such that J(τj1) = J(τj2) = 0. The same analysis as in [67] shows that,
with probability 1/(8(q − 1)(L + 1)), we have J(τ?) = 0 and J(τj) 6= 0 for each τj ∈
{τ1, . . . , τq}\{τ?}. We thus find that B’s probability not to abort during the entire game
is at least 1/(8(q − 1)(L+ 1)).

If B does not fail, we have HG(τ?) = hK(τ?), so that B can compute

z† =

n∏
i=1

M?
i
−χi , r† =

n∏
i=1

M?
i
−γi , u† = v?−K(τ?) ·

n∏
i=1

M?
i
−δi , v† = v? . (6)

We see that (z†, r†, u†, v†) forms a valid signature on (M?
1 , . . . ,M

?
n) whose last component

v† coincides with that of A’s forgery. Since (z†, r†, u†, v†) and (z?, r?, u?, v?) both satisfy the
verification equations, the triple

(z‡, r‡, u‡) =
(z?
z†
,
r
?

r†
,
u
?

u†

)
necessarily satisfies e(gz , z‡) · e(gr, r‡) = e(hz , z‡) · e(h, u‡) = 1GT . We are thus left with

proving that z‡ 6= 1G with all but negligible probability.

22 Benôıt Libert et al.

To do this, the key observation is that, in the desirable event

J(τ?) = 0 ∧
∧

τj 6=τ?
J(τj) 6= 0 , (7)

the only information that B reveals about (χ1, . . . , χn) is contained in the z-components of

signatures involving τ? if A is a Type II adversary. Indeed, for each signing query (τ, ~M) such
that τ 6= τ?, B introduces in the signature a fresh random exponent θ ∈R Zp that does not
appear anywhere else. This allows B not to leak anything about (χ1, . . . , χn) during these
queries.

More precisely, let us first consider what an unbounded Type II adversary A can see.
Throughout the game, A makes n(q − 1) + (n − 1) signing queries since at most n − 1

independent queries are allowed for the tag τ?. Let us index these queries as {
(
τj , ~Mk =

(Mk,1, . . . ,Mk,n)
)
}j,k, with j ∈ {1, . . . , q}, and let {(zj,k, rj,k, uj,k, vj,k)}j,k denote the an-

swers in which B introduces n(q−1) variables {θj,k}j 6=j?,k∈{1,...,n} in the exponent. Together
with private key elements {(χi, γi, δi)}ni=1, we have a total of 3n+n(q−1) = 2n+nq unknowns.
Each signature (zj,k, rj,k, uj,k, vj,k) provides A with at most one new linearly independent
equation —recall that (zj,k, vj,k) uniquely determines rj,k, uj,k while vj,k does not depend on
θj,k or {(χi, γi, δi)}ni=1—in addition to the 2n linear equations resulting from the public key
elements {(gi, hi)}ni=1.

Overall, a Type II adversary A thus obtains 2n + nq − 1 linear equations which is insuf-
ficient to solve a system of 2n + nq unknowns. Since (M?

1 , . . . ,M
?
n) is linearly independent

of the vectors ~Mj?,1, . . . , ~Mj?,n−1 associated with τ?, for A, predicting the value z† of (8)
is equivalent to finding the missing piece equation that would determine (χ1, . . . , χn). With
probability 1− 1/p, we thus have z† 6= z? as claimed. ut

A.2 Proof of Lemma 2

Proof Let A be a Type I forger with non-negligible advantage ε. We show that it implies an
algorithm B solving a SDP instance (gz , gr, hz , h) with probability at least ε/(8q(L+ 1)).

Algorithm B begins by choosing (w0, w1, . . . , wL) ∈ GL+1 as in the security proof of
Waters signatures [67]. This is done in such a way that, for any τ ∈ {0, 1}L, the hash value

HG(τ) can be written HG(τ) = g
J(τ)
r · hK(τ) for the same functions J,K : {0, 1}L → Zp as

in the proof of Lemma 1. For any distinct τ, τ1, . . . , τq , we will thus have J(τ) = 0 mod p and
J(τi) 6= 0 mod p for each i ∈ {1, . . . , q} with non-negligible probability ζ = 1/(8 · q · (L+ 1)).

Other public key components are defined by setting gi = g
χi
z g

γi
r and hi = h

χi
z hδi , with

χi, γi, δi
R← Zp for i = 1 to n. During the game, A’s queries are handled as follows.

Signing queries: At each signing query
(
τj , ~M = (M1, . . . ,Mn)

)
involving the j-th distinct

tag τj , B aborts in the event that J(τj) = 0 mod p. Otherwise, B picks ρ, θ
R← Zp and

computes

Θ1 = HG(τj)
−ρ · (hz)

K(τj)

J(τj)
·θ
·, Θ2 = hρ · (hz)

−θ
J(τj) .

Note that the above pair can be written (Θ1, Θ2) =
(
h−θ·αrz · HG(τ)−ρ̃, hρ̃

)
, where ρ̃ =

ρ− θ·βz
J(τj)

. Using (Θ1, Θ2), B obtains a well-formed signature on (M1, . . . ,Mn) by computing

z = gθr ·
n∏
i=1

M
−χi
i , r = g−θz ·

n∏
i=1

M
−γi
i , u = Θ1 ·

n∏
i=1

M
−δi
i , v = Θ2 .

The signature σ = (z, r, u, v) is not directly returned to A but associated with a new

handle h and stored in an entry (h, (τj , ~M), σ) of the table T .

Derivation queries: When A queries
(
(h1, . . . , hk), {βi}ki=1

)
to the signature derivation oracle,

B returns ⊥ if not all handles h1, . . . , hk correspond to queries involving τ . Otherwise, let
~M1, . . . , ~Mk be the queried vectors. If ~M ′ 6=

∏k
i=1

~M
βi
i , B returns ⊥. Otherwise, B answers

exactly like the real SignDerive oracle and updates the table T .

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 23

Reveal queries: When A queries the Reveal oracle with a handle h, B returns ⊥ if no entry of

the form (h, (τ, ~M), .) exists in T . Otherwise, B returns the previously computed signature

σ —just like the actual Reveal oracle— and adds
(
(τ, ~M), σ) in the list Q.

Forgery: Eventually, A outputs a Type II forgery (τ?, ~M?, σ?), where ~M? = (M?
1 , . . . ,M

?
n)

and σ? = (z?, r?, u?, v?) ∈ G4 is a tuple satisfying the verification equation. At this step, A
computes J(τ?) and aborts if J(τ?) 6= 0. However, the same analysis as in [67] shows that,
with probability 1/(8q(L+ 1)), we have J(τ?) = 0 and J(τj) 6= 0 for each j ∈ {1, . . . , q}.

If B does not fail, we have HG(τ?) = hK(τ?) and B can thus compute

z† =
n∏
i=1

M?
i
−χi , r† =

n∏
i=1

M?
i
−γi , u† = v?−K(τ?) ·

n∏
i=1

M?
i
−δi , v† = v? . (8)

The 4-uple (z†, r†, u†, v†) forms a valid signature on (M?
1 , . . . ,M

?
n) whose last component

is identical to that of A’s forgery. Since (z†, r†, u†, v†) and (z?, r?, u?, v?) both satisfy the
verification equations, we find that

(z‡, r‡, u‡) =
(z?
z†
,
r
?

r†
,
u
?

u†

)
necessarily gives a non-trivial solution to the SDP instance with overwhelming probability.

Indeed, the same arguments as in the proof of Lemma 1 show that we can only have z‡ = 1G
with probability 1/p. The reason is that, in each signing query, B introduces a new blinding
exponent θ that does not appear anywhere else. For this reason, B never leaks any information
about (χ1, . . . , χn) at any time and the element z† is thus completely undetermined in A’s
view. ut

B A Fully Randomizable Linearly Homomorphic SPS

In certain situations, one may want derived signatures to have the same distribution as original
signatures on the same messages.

B.1 Privacy Definition

Ahn et al. [8] formalized a strong privacy property requiring that derived signatures be statis-
tically indistinguishable from original ones, even when these are given.

In [12], Attrapadung et al. extended the definition of [8] —which only considers honestly
generated signatures— to any original signature satisfying the verification algorithm.

Definition 6 ([12]) A linearly homomorphic signature (Keygen, Sign, SignDerive,Verify) is
said completely context hiding if, for all public/private key pairs (pk, sk)← Keygen(λ), for any

message set S = {(τ, ~M1), . . . , (τ, ~Mn−1)}, any coefficients {ωi}n−1
i=1 and any (τ, ~M) such that

~M =
∏n−1
i=1

~M
ωi
i , for all {σi}n−1

i=1 such that Verify(pk, τ, ~Mi, σi) = 1, the following distributions
are statistically close

{
(sk, {σi}n−1

i=1 , Sign(sk, τ, ~M))
}
sk,S, ~M

,{(
sk, {σi}n−1

i=1 , SignDerive
(
pk, τ, {(ωi, σi)}n−1

i=1

))}
sk,S, ~M

.

In [8] Ahn et al. showed that, if a scheme is strongly context hiding, then Definition 1 can
be simplified by removing the SignDerive and Reveal oracles and only providing the adversary
with an ordinary signing oracle.

24 Benôıt Libert et al.

B.2 A Completely Context-Hiding Construction

We show that our scheme of Section 3.2 can be modified so as to become strongly context-
hiding in the sense of [8]. Namely, signatures produced by the SignDerive algorithm should be
statistically indistinguishable from signatures freshly generated by Sign, even when the original
signatures are given.

The difficulty is that, in the scheme of Section 3.2, we cannot re-randomize the underlying
θ without knowing hαrz . To address this problem, it is tempting to include in each signature a
randomization component of the form (hαrz ·HG(τ)−ζ , hζ), for some ζ ∈ Zp, which can be seen
as a signature on the vector (1G, . . . , 1G). Unfortunately, the security proof ceases to go through
as the reduction finds itself unable to generate a well-formed pair (hαrz ·HG(τ)−ζ , hζ) at some
step of its interaction with the adversary. Our solution actually consists in committing to the
signature components that cannot be re-randomized and provide evidence that committed
group elements satisfy the verification equations. This is achieved using Groth-Sahai non-
interactive arguments on a perfectly witness indistinguishable Groth-Sahai CRS, as in the
linearly homomorphic construction of Attrapadung et al. [13]. A slight difference with [13],
however, is that signature components (HG(τ)−ρ, h−ρ) are no longer used and replaced by the
technique of Malkin et al. [62], which yields slightly shorter signatures.

Keygen(λ, n): given a security parameter λ and the dimension n ∈ N of the subspace to be
signed, choose bilinear group (G,GT) of order p > 2λ. Then, do the following.

1. Choose h
R← G and αz , αr, βz ,

R← Zp. Define gz = hαz , gr = hαr and hz = hβz .

2. For each i ∈ {1, . . . , n}, pick χi, γi, δi
R← Zp and compute gi = g

χi
z · gγir , hi = h

χi
z ·hδi .

3. Generate L + 1 Groth-Sahai common reference strings by choosing f1, f2
R← G and

defining vectors ~f1 = (f1, 1, g) ∈ G3, ~f2 = (1, f2, g) ∈ G3 and ~f3,i
R← G3, for each

i ∈ {0, . . . , L}.
The public key consists of

pk =
(
gz , gr, hz , h, {gi, hi}ni=1, f =

(
~f1, ~f2, {~f3,i}Li=0

))
while the private key is sk =

(
hαrz , {χi, γi, δi}ni=1

)
.

Sign(sk, τ, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn using sk =
(
hαrz , {χi, γi,

δi}ni=1

)
with the file identifier τ , conduct the following steps.

1. Choose θ
R← Zp and compute

z = gθr ·
n∏
i=1

M
−χi
i , r = g−θz ·

n∏
i=1

M
−γi
i , u = h−θ·αrz ·

n∏
i=1

M
−δi
i .

2. Using the bits τ [1] . . . τ [L] of τ ∈ {0, 1}L, define the vector ~fτ = ~f3,0 ·
∏L
i=1

~f
τ [i]

3,i so

as to assemble a Groth-Sahai CRS fτ = (~f1, ~f2, ~fτ).
3. Using fτ , compute Groth-Sahai commitments

~Cz = (1G, 1G, z) · ~f1
νz,1 · ~f2

νz,2 · ~fτ
νz,3

~Cr = (1G, 1G, r) · ~f1
νr,1 · ~f2

νr,2 · ~fτ
νr,3

~Cu = (1G, 1G, u) · ~f1
νu,1 · ~f2

νu,2 · ~fτ
νu,3

to z, r and u, respectively. Using the randomness of these commitments, generate
proofs ~π1 = (π1,1, π1,2, π1,3) ∈ G3 and ~π2 = (π2,1, π2,2, π2,3) ∈ G3 that (z, r, u)
satisfy the verification equations 1GT = e(gz , z) · e(gr, r) ·

∏n
i=1 e(gi,Mi) and 1GT =

e(hz , z) · e(h, u) ·
∏n
i=1 e(hi,Mi). These proofs are obtained as

~π1 = (π1,1, π1,2, π1,3) =
(
g
−νz,1
z · g−νr,1r , g

−νz,2
z · g−νr,2r , g

−νz,3
z · g−νr,3r

)
~π2 = (π2,1, π2,2, π2,3) =

(
h
−νz,1
z · h−νu,1 , h−νz,2z · h−νu,2 , h−νz,3z · h−νu,3

)

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 25

and satisfy the verification equations

n∏
i=1

E
(
gi, (1G, 1G,Mi)

)−1
= E

(
gz , ~Cz

)
· E
(
gr, ~Cr

)
· E(π1,1, ~f1) ·

E(π1,2, ~f2) · E(π1,3, ~fτ) ,

n∏
i=1

E
(
hi, (1G, 1G,Mi)

)−1
= E

(
hz , ~Cz

)
· E
(
h, ~Cu

)
· E(π2,1, ~f1) ·

E(π2,2, ~f2) · E(π2,3, ~fτ) .

(9)

The signature consists of

σ = (~Cz , ~Cr, ~Cu, ~π1, ~π2) ∈ G15 . (10)

SignDerive(pk, τ, {(ωi, σ
(i))}`

i=1): given pk, a file identifier τ and ` tuples (ωi, σ
(i)), parse

each signature σ(i) as a tuple of the form σ(i) = (~Cz,i, ~Cr,i, ~Cu,i, ~π1,i, ~π2,i) ∈ G15 for i = 1
to `. Otherwise, the derivation process proceeds in two steps.

1. Compute

~Cz =
∏̀
i=1

~C
ωi
z,i ,

~Cr =
∏̀
i=1

~C
ωi
r,i , ~Cu =

∏̀
i=1

~C
ωi
u,i , ~π1 =

∏̀
i=1

~π
ωi

1,i , ~π2 =
∏̀
i=1

~π
ωi

2,i .

2. Re-randomize the above commitments and proofs using their homomorphic property

and return the re-randomized version σ = (~Cz , ~Cr, ~Cu, ~π1, ~π2).

Verify(pk, σ, τ, (M1, . . . ,Mn)): given a pair (τ, (M1, . . . ,Mn)) and a purported signature

σ parse the latter as (~Cz , ~Cr, ~Cu, ~π1, ~π2). Then, return 1 if and only if (M1, . . . ,Mn) 6=
(1G, . . . , 1G) and equations (9) are satisfied.

We believe this construction to be of interest even if we disregard its structure-preserving
property. Indeed, if we compare it with the only known completely context-hiding linearly
homomorphic signature in the standard model [13], its signatures are shorter by one group
element. Moreover, we can prove the security under the sole DLIN assumption whereas the
scheme of [13] requires an additional assumption.

The scheme is clearly completely context hiding because signatures only consist of per-
fectly randomizable commitments and NIWI arguments.

As for the unforgeability of the scheme, the proof of the following theorem is along the
lines of [62, Theorem 5]. However, we can only prove unforgeability in a weaker sense as we
need to assume that the adversary is targeting. Namely, in the case of Type II attacks, the
adversary must also output a proof that it actually broke the security of the scheme and that

its vector ~M? = (M?
1 , . . . ,M

?
n) ∈ Gn is indeed independent of the vectors for which it obtained

signatures for the target tag τ?.

If { ~Mi = (Mi,1, . . . ,Mi,n)}mi=1 denote the linearly independent vectors that were signed

for τ?, the adversary could simply output a vector ~W = (W1, . . . ,Wn) ∈ Gn such that∏n
j=1 e(M

?
j ,Wj) 6= 1GT and

∏n
j=1 e(Mi,j ,Wj) = 1GT for each i ∈ {1, . . . ,m}. The latter

test guarantees that the adversary’s output is a non-trivial Type II forgery.

Theorem 4 The above scheme provides unforgeability against independent targeting adver-
saries if the DLIN assumption holds in G.

Proof Since the scheme is completely context-hiding, we work with a simpler security definition
where the adversary only interacts with a signing oracle. This suffices to guarantee security in
the sense of Definition 2, as implied by the result of Ahn et al. [8]. The proof proceeds via a
sequence of games. In each game, we denote by Xi the probability that the adversary A wins.

Gamereal : This is the real game. When the adversary A terminates, the simulator outputs 1
if A is successful. We thus have Pr[Xreal] = Adv(A).

26 Benôıt Libert et al.

Game0 : This game is identical to Gamereal but we modify the generation of the public

key. Namely, the vectors (~f1, ~f2, {~f3,i}Li=0) are chosen by setting ~f1 = (f1, 1G, g) and ~f2 =

(1G, f2, g), with f1, f2
R← G. As for {~f3,i}Li=0, they are obtained as

~f3,0 = ~f1
ξ0,1 · ~f2

ξ0,2 · (1, 1, g)ξ0,3 · (1, 1, g)µ·ζ−ρ0 (11)

~f3,i = ~f1
ξi,1 · ~f2

ξi,2 · (1, 1, g)ξi,3 · (1, 1, g)−ρi , i ∈ {1, . . . , L}

with µ
R← {0, . . . , L}, ξ0,1, ξ1,1, . . . , ξL,1

R← Zp, ξ0,2, ξ1,2, . . . , ξL,2
R← Zp, ξ0,3, ξ1,3, . . . , ξL,3

R←
Zp and ρ0, ρ1, . . . , ρL

R← {0, . . . , ζ− 1}, with ζ = 2q and where q is the number of distinct tags

across all signing queries. Note that this change is only conceptual since {~f3,i}Li=0 have the
same distribution as in Gamereal . We thus have Pr[X0] = Adv(A).

Game1 : In this game, we first raise an event F1, which causes the simulator B to abort if it does
not occur. Let τ1, . . . , τq be the distinct tags successively involved in A’s queries throughout
the game and let τ? be the tag involved in A’s forgery. We know that, for a Type II forger,
τ? ∈ {τ1, . . . , τq} whereas τ? 6∈ {τ1, . . . , τq} for a Type I adversary. For each string τ ∈ {0, 1}L,

we consider the function J(τ) = µ · ζ − ρ0 −
∑L
i=1 ρiτ [i]. We also define F1 to be the event

that
J(τ?) = 0 ∧

∧
τj∈{τ1,...,τq}\{τ?}

J(τj) 6= 0.

We note that the exponents ρ0, ρ1, . . . , ρL are independent of A’s view: as a consequence, the

simulator could equivalently define {~f3,i}Li=0 first and only choose {ρi}Li=0 – together with

values {ξ3,i}Li=0 explaining the {~f3,i}Li=0 – at the end of the game, when τ?, τ1, . . . , τq have
been defined. In the case of a Type I attack, the same analysis as [67] (after the simplification
of Bellare and Ristenpart [14]) shows that Pr[X1 ∧ F1] ≥ Adv(A)2/(27 · q · (L+ 1)).

This follows from the fact that, for any set of queries, a lower bound on the probability
of event F1 is 1/(2q(L+ 1)). In the case of Type II attacks, a lower bound on the probability
of F1 for any set of queries is given by η ≥ 1/(2(q − 1)(L+ 1)) > 1/(2q(L+ 1)). Indeed, after
re-ordering, the set of queried tags can be written {τ?, τ1, . . . , τq−1} and, from the known
results [67,52] on the programmability of Waters’ hash function, we know that the probability,

taken over the choice of (µ, ρ0, . . . , ρL), to have J(τ?) = 0 and ∧q−1
j=1J(τj) 6= 0 for any distinct

τ?, τ1, . . . , τq is at least 1/(2(q− 1)(L+ 1)) > 1/(2q(L+ 1)). In the following, we denote by Fi
the counterpart of event F1 in Gamei.

Game2 : In this game, we modify the distribution of the public key. Namely, ~f1 = (f1, 1, g)

and ~f2 = (1, f2, g) are chosen as before but, instead of generating the vectors {~f3,i}Li=0 as
previously, we choose them as

~f3,0 = ~f1
ξ0,1 · ~f2

ξ0,2 · (1, 1, g)µ·ζ−ρ0 (12)

~f3,i = ~f1
ξi,1 · ~f2

ξi,2 · (1, 1, g)−ρi , i ∈ {1, . . . , L}

which amounts to setting ξ0,3 = ξ1,3 = . . . = ξL,3 = 0. This change should not significantly
affect A’s behavior if the DLIN assumption holds. More precisely, if events X1∧F1 and X2∧F2

occur with noticeably different probabilities in Game1 and Game2, this contradicts the DLIN

assumption. Concretely, consider a DLIN instance (g, f1, f2, f
δ1
1 , fδ22 , Z), where δ1, δ2

R← Zp
and Z = gδ1+δ2 or Z ∈R G. Using the random self-reducibility of DLIN, we can create L+ 1

independent DLIN instances by picking ϕi, φi, ψi
R← Zp, for i ∈ {0, . . . , L} and setting

~f3,0 =
(
(fδ11)ϕ0 · fφ0

1 , (fδ22)ϕ0 · fψ0
2 , Zϕ0 · gφ0+ψ0 · (1, 1, g)µ·ζ−ρ0

)
~f3,i =

(
(fδ11)ϕi · fφi1 , (fδ22)ϕi · fψi2 , Zϕi · gφi+ψi · (1, 1, g)−ρi

)
, i ∈ {1, . . . , L}

If Z ∈R G, {~f3,i}Li=0 is distributed as in Game1. If Z = gδ1+δ2 , the distribution of {~f3,i}Li=0 is

the same as in (12). For this reason, we can write |Pr[X2∧F2]−Pr[X1∧F1]| ≤ AdvDLIN(A) as
we assumed that the challenger B can always detect when a targeting adversary is successful.

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 27

Game3 : In this game, we modify the treatment of signing queries. We note that, for a given

message (τ, ~M = (M1, . . . ,Mn)), there is an exponential number of witnesses (z, r, u) ∈ G3

satisfying the verification equations

e(gz , z) · e(gr, r) ·
n∏
i=1

e(gi,Mi) = 1GT ,

e(hz , z) · e(h, u) ·
n∏
i=1

e(hi,Mi) = 1GT .

(13)

Specifically, each z ∈R G determines a unique pair (r, u) for which (13) holds. However, in
Game3, the simulator B answers all signing queries using the witness (z, r, u) such that

z =

n∏
i=1

M
−χi
i , r =

n∏
i=1

M
−γi
i , u =

n∏
i=1

M
−δi
i .

Note that this amounts to choosing θ = 0 at step 1 of the signing algorithm. Still, B has a valid

witness for the statement to be proved. It thus assembles a Groth-Sahai CRS f = (~f1, ~f2, ~fτ) by

computing ~fτ = ~f3,0 ·
∏L
i=1

~f
τ [i]

3,i . Using f , it computes Groth-Sahai commitments ~Cz , ~Cr, ~Cu
to z, r and u. Using the randomness of these commitments, it faithfully generates proofs ~π1
and ~π2 satisfying the verification equations (9).

We argue that this change does not affect A’s view whatsoever. Indeed, if event F3 occurs
we have J(τ?) = 0 and J(τj) 6= 0 for each τj 6= τ?. Moreover, when J(τj), the Groth-Sahai CRS

(~f1, ~f2, ~fτj) is a perfectly hiding Groth-Sahai CRS. This means that ~Cz , ~Cr, ~Cu are perfectly
hiding commitments and proofs (~π1, ~π2) are perfectly witness indistinguishable proofs. In other
words, although the proofs (~π1, ~π2) are always generated using the witnesses (z, r, u) for which
θ = 0, their distribution does not depend on which specific witness is used.

In contrast, in the case of Type II attacks, signing queries involving τ?, (~Cz , ~Cr, ~Cu, ~π1, ~π2)

reveal the underlying (z, r, u) in the information theoretic sense since (~f1, ~f2, ~fτ?) is a perfectly
binding CRS when J(τ?) = 0. However, at most n− 1 signing queries on linearly independent

vectors ~Mj are made for the tag τ?, so that A only obtains n−1 linearly independent equations
in the exponent. As a consequence, A does not obtain a sufficient amount of information to
recognize that θ = 0 in the underlying signatures. For this reason, we find that Pr[X3 ∧ F3] =
Pr[X2 ∧ F2].

In Game3, we show that a successful forger A implies an algorithm B solving a given SDP
instance (gz , gr, hz , h) with non-negligible advantage, which contradicts the DLIN assumption.

Recall that, when the adversary A terminates, it outputs (τ?, ~M?, σ?), where ~M? =

(M?
1 , . . . ,M

?
n) and σ? = (~C?z ,

~C?r ,
~C?u, ~π

?
1 , ~π

?
2) ∈ G15 satisfies the verification equations. At

this point, if the event F1 introduced in Game1 occurs, we must have J(τ?) = 0, which means

that ~fτ? = ~f3,0 ·
∏L+1
i=1

~f
τ?[i]

3,i is in span(~f1, ~f2). This implies that ~C?z , ~C?r and ~C?u are per-

fectly binding commitments. Moreover, using (logg(f1), logg(f2)), B can extract the underlying

group elements (z?, r?, u?) ∈ G3 by performing BBS decryptions of ciphertexts (~C?z ,
~C?r ,

~C?u).
Since (~π?1 , ~π

?
2) are valid proofs for a perfectly sound Groth-Sahai CRS, the extracted elements

(z?, r?, u?) necessarily satisfy

1GT = e(gz , z
?) · e(gr, r?) ·

n∏
i=1

e(gi,M
?
i) = e(hz , z

?) · e(h, u?) ·
n∏
i=1

e(hi,M
?
i) . (14)

Having extracted (z?, r?, u?), B also computes

z† =

n∏
i=1

M?
i
−χi , r† =

n∏
i=1

M?
i
−γi , u† =

n∏
i=1

M?
i
−δi , (15)

so that (z†, r†, u†) also satisfies (14). Since (z†, r†, u†) and (z?, r?, u?) both satisfy (14), the
triple

(z‡, r‡, u‡) =
(z?
z†
,
r
?

r†
,
u
?

u†

)

28 Benôıt Libert et al.

necessarily satisfies e(gz , z‡) · e(gr, r‡) = e(hz , z‡) · e(h, u‡) = 1GT . To conclude the proof, we

argue that z‡ 6= 1G with all but negligible probability.
To do this, we remark that, if the event F1 defined in Game1 occurs, the only information

that B leaks about (χ1, . . . , χn) resides in the unique signing query involving τ? if the case of

Type II attacks. Indeed, for all signing queries (τ, ~M) involving tags τ such that τ 6= τ?, we have

J(τ) 6= 0 so that (~f1, ~f2, ~fτ) is a perfectly hiding Groth-Sahai CRS, for which proofs (~π1, ~π2)
and commitments are perfectly witnesses indistinguishable. In other words, the signatures

(~Cz , ~Cr, ~Cu, ~π1, ~π2) for which J(τ) 6= 0 leak nothing about (χ1, . . . , χn). In contrast, in the

case of Type II attacks, signing queries involving τ?, (~Cz , ~Cr, ~Cu, ~π1, ~π2) reveal the underlying
(z, r, u) in the information theoretic sense. However, at most n−1 linearly independent vectors
~Mj are signed w.r.t. τ?, so that A only obtains n − 1 linearly independent equations in the

exponent for the unknowns (χ1, . . . , χn). As a consequence, we can apply the same arguments
as in the proof of Theorem 1 and Lemma 1. With probability 1− 1/p, we thus have z‡ 6= z?.

To recap, we find

Pr[X3 ∧ F3] = AdvSDP(B) ·
(

1−
1

p

)−1
.

When putting the above altogether, we find

Adv(A)2

27 · q · (L+ 1)
≤ AdvSDP(B) ·

(
1−

1

p

)−1
+ AdvDLIN(B) .

Since any SDP algorithm B0 yields a DLIN distinguisher B1 such that AdvDLIN(B0) ≥ 2 ·
AdvSDP(B1), we find

Adv(A) ≤

√
27 · q · (L+ 1) ·

[
1 +

1

2
·
(

1−
1

p

)−1]
·AdvDLIN(B)

and the announced result follows. ut

C Definitions for Trapdoor Commitments

Formally, a non-interactive commitment scheme (Setup,Com,Verify) is a triple of probabilistic
polynomial-time (PPT) algorithms where, on input of a security parameter λ, Setup out-
puts a public key pk; Com takes as input a message Msg, a public key pk and outputs a

commitment/de-commitment pair (com, dec)
R← Com(pk,Msg), and Verify(pk,Msg, com, dec)

is deterministic and outputs 0 or 1. The correctness property guarantees that Verify always
outputs 1 whenever (com, dec) is obtained by committing to Msg using honestly generated
parameters.

The binding property demands that, given pk, no PPT adversary should be able to produce
a commitment that can be opened to two distinct messages. More precisely, for any PPT
adversary A, the following advantage function should be negligible as a function of λ.

Advbind
CMT(A) := Pr[Verify(pk,Msg0, com, dec0) = Verify(pk,Msg1, com, dec1) = 1 ∧

Msg0 6= Msg1 : pk
R← Setup(λ); (com,Msg0, dec0,Msg1, dec1)

R← A(pk)]

A commitment is also said hiding if commitment to distinct messages have computationally
indistinguishable distributions. Formally, for any PPT adversary A = (A1,A2), the following
advantage term is negligible as a function of λ.

Advhide
CMT(A) :=

∣∣∣Pr[b = b′ : pk
R← Setup(λ); b

R← {0, 1}; (Msg0,Msg1, st)
R← A1(pk);

(com, dec)
R← Com(pk,mb); b

′ R← A2(com, st)]−
1

2

∣∣∣
A trapdoor commitment is a perfectly hiding commitment for which a trapdoor tk makes it

possible to break the binding property and open a commitment to any arbitrary value. However,
this should remain infeasible without the trapdoor. More formally, a trapdoor commitment
uses two additional algorithms (FakeCom,FakeOpen) that proceed as follows.

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 29

Definition 7 A trapdoor commitment is a tuple (Setup,Com,FakeCom,FakeOpen,Verify) of
efficient algorithms where Com and Verify proceed as in an ordinary commitment and other
algorithms proceed as follows.

Setup: is a randomized algorithm that takes as input a security parameter λ. It produces a
public key pk and a trapdoor tk.

FakeCom: is a randomized algorithm that takes as input a public key pk and the trapdoor tk.
It outputs a fake commitment string c̃om and some auxiliary information aux.

FakeOpen: takes as input a fake commitment produced by FakeCom and the corresponding
auxiliary information aux. It also takes as input a message Msg and the trapdoor tk and

outputs a fake de-commitment d̃ec such that Verify(pk,Msg, c̃om, d̃ec) = 1. Moreover, the
two distributions

Dfake := {(pk, tk)← Setup(λ); (c̃om, aux)← FakeCom(pk, tk);

d̃ec← FakeOpen(aux, tk, c̃om,Msg) : (pk,Msg, c̃om, d̃ec)}

and

Dreal := {(pk, tk)← Setup(λ); (com, dec)← Com(pk,Msg) : (pk,Msg, com, dec)}

should be indistinguishable.

We now recall the definition of independence for commitment schemes, which is known
(see, e.g., [45] for a proof) to imply re-usable non-malleability with respect to opening.

Definition 8 ([34]) A trapdoor commitment scheme (Setup,Com,FakeCom,FakeOpen,Verify)
provides `-independence if, for any PPT adversary (A1,A2) and any pair of `-tuples (Msg1, . . . ,
Msg`), (Msg′1, . . . ,Msg`)

′, the following probability is a negligible function of the security pa-
rameter λ:

Pr[(pk, tk)← Setup(λ); R1, . . . , R`
R← {0, 1}poly(λ);

(c̃omi, auxi)← FakeCom(pk, tk, Ri)

(st, com?)← A1(pk, c̃om1, . . . , c̃om`) with com? 6∈ {c̃omi}`i=1

deci ← FakeOpen(auxi, tk, c̃omi,Msgi) ∀i ∈ {1, . . . , `}
dec′i ← FakeOpen(auxi, tk, c̃omi,Msg′i) ∀i ∈ {1, . . . , `}
(Msg?1, dec

?
1)← A2(st, pk,Msg1, dec1, . . . ,Msg`, dec`)

(Msg?2, dec
?
2)← A2(st, pk,Msg′1, dec

′
1, . . . ,Msg′`, dec

′
`) :

Msg?1 6= Msg?2 ∧ Verify(pk,Msg?1, com
?, dec?1) = 1 ∧ Verify(pk,Msg?2, com

?, dec?2) = 1] .

A trapdoor commitment is independent if it provides `-independence for any arbitrary ` ∈
poly(λ).

It is known (see, e.g., [61]) that, when a SSTC scheme and a secure one-time signature are
combined to build an ordinary commitment scheme, the simulation-sound binding property
and the security of the one-time signature imply the notion of independence.

D Proof of Theorem 3

Proof We first observe that the commitment satisfies the trapdoor property if the homomor-
phic SPS is regular. Indeed, in the distribution Dfake , the commitment c̃om is obtained as

cj =

nz∏
µ=1

e(Fj,µ, Ẑµ) ·
nv∏
ν=1

e(Tj,ν , V̂ν) ·
n∏
i=1

e(Gj,i, M̂i) , j ∈ {1, . . . ,m} (16)

30 Benôıt Libert et al.

where (M̂1, . . . , M̂n) ∈R Gn and for a uniformly random tuple (Ẑ1, . . . , Ẑnz , V̂1, . . . , V̂nv) ∈R
Gnz+nv . We also know that, for any (M1, . . . ,Mn) 6= (M̂1, . . . , M̂n), the vector (M1/M̂1, . . . ,

Mn/M̂n) has a valid signature σ′ = (Z′1, . . . , Z
′
nz
, V ′1 , . . . , V

′
nv

), so that there exists

d̃ec = (Z̃1, . . . , Z̃nz , Ṽ1, . . . , Ṽnv) = (Z′1 · Ẑ1, . . . , Ẑ
′
nz
· Ẑnz , V ′1 · V̂1, . . . , V ′nv · V̂nv)

that explains c̃om as a commitment to (M1, . . . ,Mn). Moreover, since (Ẑ1, . . . , Ẑnv , V̂1, . . . , V̂nv)

was chosen uniformly in Gnz+nv , d̃ec is uniform among values (Z̃1, . . . , Z̃nz , Ṽ1, . . . , Ṽnv) such
that

cj =

nz∏
µ=1

e(Fj,µ, Z̃µ) ·
nv∏
ν=1

e(Tj,ν , Ṽν) ·
n∏
i=1

e(Gj,i,Mi) , j ∈ {1, . . . ,m} . (17)

In other words, the joint distribution of (c̃om, d̃ec) is the same as if it were obtained by choosing

(Z̃1, . . . , Z̃nz , Ṽ1, . . . , Ṽnv)
R← Gnv+nz and computing {cj}mj=1 as per (17).

We now turn to the simulation-sound binding property and show that, if there exists a
PPT adversary A that breaks this property with non-negligible advantage ε, there exits a
non-independent Type I forger B against the signature scheme.

Concretely, our adversary B obtains a public key pk from its own challenger and sends the
commitment key pk = pk to A. Whenever A sends a query (commit, tag) to the Otk,pk oracle,
B faithfully runs the SSTC.FakeCom algorithm and thus computes c̃om = {c̃j}mj=1 according

to (16) for randomly chosen (M̂1, . . . , M̂n)
R← Gn, ˆdec = (Ẑ1, . . . , Ẑnz , V̂1, . . . , V̂nv)

R← Gnz+nv
and retains the information aux = ((M̂1, . . . , M̂n), ˆdec). When the oracle Otk,pk subsequently
receives a query of the form (decommit, c̃om, (M1, . . . ,Mn)), the reduction B invokes its own

signing oracle on the input (tag, (M1/M̂1, . . . ,Mn/M̂n)). Upon receiving the resulting signa-

ture (Z′1, . . . , Z
′
nz
, V ′1 , . . . , V

′
nv

), B computes and returns d̃ec = (Ẑ1 · Z′1, . . . , Ẑnz · Z′nz , V̂1 ·
V ′1 , . . . , V̂nv · V ′nv).

Eventually, the adversary A outputs a commitment of its own com? = (c?1, . . . , c
?
m) along

with valid openings dec = (Z1, . . . , Znz , V1, . . . , Vnv), dec′ = (Z′1, . . . , Z
′
nz
, V ′1 , . . . , V

′
nv

) to dis-
tinct vectors (M1, . . . ,Mn) 6= (M ′1, . . . ,M

′
n) for some tag tag? that has never been used in any

query to Otk,sk. Since both openings successfully pass the verification test, we find that(
Z1/Z

′
1, . . . , Znz/Z

′
nz
, . . . , V1/V

′
1 , . . . , Vnv/V

′
nv

)
forms a valid homomorphic signature on the vector (M1/M ′1, . . . ,Mn/M ′n) 6= (1G, . . . , 1G) for
the identifier τ? = tag?. By construction, τ? was never the input of a signing query made by B
to its own oracle. Consequently, B is indeed a Type I non-independent forger with advantage
ε. ut

E Non-Interactive Simulation-Sound Trapdoor Commitments from

Linearly Homomorphic Signatures in Groups of Public Order

MacKenzie and Yang [61] showed that simulation-sound trapdoor commitments imply digital
signatures. In the converse direction, constructions of SSTCs are only known for signature
schemes admitting efficient Σ protocols. In fact, as noted by Fujisaki [40], all known con-
structions of non-interactive simulation-sound or multi-trapdoor [42] commitments build on
signature schemes for which an efficient Σ protocol allows proving knowledge of a signature.

The idea is to commit to a message m by using m as the challenge of a Σ protocol for
proving knowledge of a signature σ = Sig(sk, tag) on the tag. The commitment is given by
the first message a of the Σ protocol transcript (a,m, z), which is obtained by simulating a
proof of knowledge of a valid signature σ on the message tag. The commitment is subsequently
opened by revealing z. By the special soundness of the Σ protocol, unless the sender actually
knows a valid signature on tag, it can only open a given commitment a to one message m.

While simple, the above construction (which extends to give identity-based trapdoor com-
mitments, as noted in [24]) does not readily extend to commit to vectors. Fujisaki [40] gave an
alternative construction based on encryption schemes. However, this construction is interactive.

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 31

Groth and Ostrovsky [49] finally defined the notion of simulation-extractable commitments by
additionally requiring adversarially-generated commitments to be extractable instead of sim-
ply binding. A consequence of this strengthened property is that, just like UC commitments
[25], simulation-extractable commitments cannot be length-reducing any longer.

This section shows that ordinary (i.e., non-structure-preserving) linearly homomorphic
signatures also make it possible to construct non-interactive simulation-sound (and thus non-
malleable) commitments if they satisfy a certain template. Moreover, they make it possible to
commit to vectors while preserving the ability of efficiently proving properties about committed
vectors. We notably obtain efficient constructions based on the Diffie-Hellman and strong
Diffie-Hellman [15] assumptions.

E.1 Definition and Template

We first consider a definition of unforgeability which is obtained by simplifying Definition 2
and removing the SignDerive and Reveal oracles. As we will see, this simplified definition will
be sufficient for the construction of simulation-sound trapdoor commitments. On the other
hand, unlike the definition used in [19,17,18], Definition 9 allows the adversary to choose the
file identifiers in his signing queries.

Definition 9 A linearly homomorphic signature scheme Σ = (Keygen,Sign, SignDerive,Verify)
is secure if no probabilistic polynomial time (PPT) adversary has non-negligible advantage (as
a function of the security parameter λ ∈ N) in the following game:
1. The adversary A chooses an integer n ∈ N and sends it to the challenger who runs

Keygen(λ, n) and obtains (pk, sk) before sending pk to A.
2. On a polynomial number of occasions,A chooses a tag τ ∈ T and a vector ~v. The challenger

returns σ = Sign(sk, τ, ~v) to A.
3. A outputs an identifier τ?, a signature σ? and a vector ~y ∈ ZnN . The adversary A is deemed

successful if Verify(pk, τ?, ~y?, σ?) = 1 and either of the following holds:

◦ (Type I): τ? 6= τi for any i and ~y? 6= ~0.
◦ (Type II): τ? = τi for some i ∈ {1, . . . , q} and ~y? 6∈ Vi, where Vi denotes the subspace

spanned by all vectors ~v1, . . . , ~vki that have been queried for τi.

Note that, in some cases, it may be sufficient to use a non-adaptive definition of unforge-
ability where the adversary has to declare all the file identifier τ1, . . . , τq involved in signing
queries at the very beginning of the attack (before seeing the public key pk).

Again, we say that the adversary is independent if
– For any given tag τ , it is restricted to only query signatures on linearly independent vectors.
– Each pair (τ, ~m) is queried at most once.

Let Π = (Keygen, Sign, SignDerive,Verify) be a linearly homomorphic signature over Znp ,

for some large prime p > 2λ. We assume that Π uses groups G1 and G2 of public orders pk

and p, respectively, for some k ∈ N. We also assume that each signature σ lives in G1. The
verification algorithm takes as input a purported signature σ ∈ G1, a file identifier τ and a
vector ~m. It returns 1 if and only if

F (σ, ~m, pk, τ) = 1G2
, (18)

where F is a function ranging over the group G2 and satisfying certain linearity properties.
Namely, for each pk produced by Keygen and each τ , we require that

F (σ1 · σ2, ~m1 + ~m2, pk, τ) = F (σ1, ~m1, pk, τ) · F (σ2, ~m2, pk, τ)

for any vectors ~m1, ~m2 ∈ Znp and any σ1, σ2 ∈ G1. As a consequence, we also have

F (σ, ~m, pk, τ)ω = F (σω , ω · ~m, pk, τ)

for any ω ∈ Zp and any σ ∈ G1. Finally, the derivation algorithm SignDerive proceeds by

computing SignDerive(pk, τ, {(ωi, σ(i))}`i=1) =
∏`
i=1 σ

(i)ωi .
We remark that the above template only captures schemes in groups of public order, so

that constructions based on the Strong RSA assumption [26,27] or on lattices [17,18] are
not covered. The reason is that, when working over the integers, messages and signature
components may increase at each homomorphic operation. This makes it harder to render
trapdoor openings indistinguishable from original de-commitments.

32 Benôıt Libert et al.

E.2 Simulation-sound Trapdoor Commitments from Linearly Homomorphic
Signatures

From a linearly homomorphic signature scheme Π = (Keygen,Sign, SignDerive,Verify) satisfy-
ing the template of Appendix E.1, we construct a non-interactive length-reducing SSTC as
follows.

SSTC.Setup(λ, n): given the required dimension n ∈ N of committed vectors, runΠ.Keygen(λ,
n) to obtain a public key pk and a private key sk. The commitment key is pk = pk and
the trapdoor tk consists of the private key sk of Π.

SSTC.Com(pk, tag, ~m): to commit to a vector ~m ∈ Znp , choose σ
R← G1 in the signature

space. Compute and output

c = F (σ, ~m, pk, tag)

by evaluating F as in the left-hand-side member of the verification equation (18). The
commitment string is com = c whereas the decommitment is dec = σ.

SSTC.FakeCom(pk, tk, tag): proceeds identically to SSTC.Com but using a randomly chosen

vector ~mfake
R← Znp . If (ˆcom, ˆdec) denotes the resulting commitment/decommitment pair,

the algorithms sets c̃om = ˆcom and aux = (~mfake , ˆdec).

SSTC.FakeOpen(aux, tk, tag, c̃om, ~m): the algorithm parses c̃om as c̃ ∈ G2 and aux as
(
~mfake ,

ˆdec), where ˆdec = σ̂ ∈ G1. It first generates a linearly homomorphic signature on the dif-
ference vector ~m − ~mfake ∈ Znp for the tag tag = τ . Namely, using the trapdoor tk = sk,
compute

σ′ ← Π.Sign
(
sk, τ, ~m− ~mfake

)
.

Finally, it computes σ̃ = SignDerive(pk, τ, {(1, σ̂), (1, σ′)}) = σ̂ · σ′ ∈ G1 and returns

d̃ec = σ̃.
SSTC.Verify(pk, tag, ~m, com, dec): parse the commitment com as c ∈ G2 and the opening

dec as σ ∈ G1. If these cannot be parsed properly, return 0. Otherwise, return 1 if c =
F (σ, ~m, pk, tag) and 0 otherwise.

For completeness, we prove the following result in a similar way to the proof of Theorem 3.

Theorem 5 The above construction is a secure SSTC assuming that Π is both regular and
unforgeable against non-independent Type I attacks.

Proof The proof is very similar to the proof of Theorem 3. We first show that the commitment
is a trapdoor commitment if Π is a regular homomorphic signature. Indeed, in the distribution
Dfake , the commitment is obtained as

c̃om = F (σ̂, ~mfake , pk, tag) (19)

where ~mfake ∈R Znp and σ̂ ∈R G1. Since Π is regular, we also know that, for any ~m 6= ~mfake ,

the vector ~m− ~mfake has a valid signature σ′ ∈ G1. As a consequence, there exists

d̃ec = σ̃ = SignDerive(pk, τ, {(1, σ̂), (1, σ′)}) = σ̂ · σ′

such that c̃om = F (σ̃, ~m, pk, tag), so that c̃om can be explained as a commitment to ~m.
Moreover, since σ̂ was chosen uniformly in G1, the obtained de-commitment σ̃ is uniform
among values such that

c̃om = F (σ̃, ~m, pk, tag)

Said otherwise, (c̃om, d̃ec) has the same distribution as if it were obtained by choosing d̃ec =

σ̃
R← G1 and computing c̃om = F (σ̃, ~m, pk, tag).

To establish the simulation-sound binding property, we show that, if there exists a PPT
adversary A that breaks this property with advantage ε, the homomorphic signature scheme
Π can be broken by a non-independent Type I forger B with the same advantage ε.

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 33

Algorithm B takes as input a linearly homomorphic signature public key pk and sends
pk = pk to the simulation-binding adversary A. When A sends a query (commit, tag) to the
Otk,pk oracle, B runs the SSTC.FakeCom algorithm and computes c̃om = F (σ̂, ~mfake , pk, tag)

for randomly chosen σ̂
R← G1 and ~mfake

R← Znp . It retains the state information aux = (~mfake , σ̂).
For each invocation of the oracle Otk,pk for an input of the form (decommit, c̃om, ~m), B sends
the query (tag, ~m − ~mfake) to its own signing oracle. Upon receiving the latter’s response σ′,

B computes and returns d̃ec = σ′ · σ̂.
Eventually, A comes up with a commitment of its own com? with valid openings dec = σ,

dec′ = σ′ to distinct vectors ~m 6= ~m′ for a tag tag? that it never submitted to Otk,sk. Since
~m 6= ~m′ and dec and dec′ are valid openings of com? to ~m and ~m′, respectively, the triple(

τ?, σ/σ′, ~m− ~m′
)

forms a valid Type I forgery for the linearly homomorphic scheme Π. ut

E.3 Instantiations

Construction from the Diffie-Hellman Assumption. Previously, non-malleable commit-
ments based on the CDH assumption were —implicitly or explicitly— described in [35,64] but
it is not immediate how to extend them to commit to vectors in a modular way.

In [12], Attrapadung et al. described a linearly homomorphic signature which is notably
secure against Type I independent adversaries —as implicitly proved by [12, Lemma 8]— under
the computational Diffie-Hellman (CDH) assumption.

Keygen(λ, n): given a security parameter λ ∈ N and an integer n ∈ poly(λ), choose bilinear

groups (G,GT) of prime order p > 2λ. Choose α
R← Zp, g, v

R← G and u0, u1, . . . , uL
R← G,

for some L ∈ poly(λ). These elements (u0, . . . , uL) ∈ GL+1 will be used to implement a pro-
grammable hash function HG : {0, 1}L → G such that any L-bit string τ = τ [1] . . . τ [L] ∈
{0, 1}L is mapped to the hash value HG(τ) = u0 ·

∏L
i=1 u

τ [i]
i . Pick gi

R← G for i = 1 to n.

Finally, define the identifier space T := {0, 1}L. The private key is sk := α and the public
key consists of

pk :=
(

(G,GT), g, gα, v, {gi}ni=1, {ui}Li=0

)
.

Sign(sk, τ, ~m): given a vector ~m = (m1, . . . ,mn) ∈ Znp , a file identifier τ ∈ {0, 1}L and the

private key sk = α ∈ Zp, return ⊥ if ~m = ~0. Otherwise, choose r, s
R← Zp. Then, compute

a signature σ = (σ1, σ2, s) ∈ G2 × Zp as

σ1 = (gm1
1 · · · gmnn · vs)α ·HG(τ)r , σ2 = gr .

SignDerive(pk, τ, {(βi, σi)}`
i=1): given pk, a file identifier τ and ` tuples (βi, σi), parse each

signature σi as σi = (σi,1, σi,2, si) for i = 1 to `. Then, choose r̃
R← Zp and compute

σ1 =
∏̀
i=1

σ
βi
i,1 ·HG(τ)r̃ , σ2 =

∏̀
i=1

σ
βi
i,2 · g

r̃ , s =
∑̀
i=1

βi · si ,

and output (σ1, σ2, s).
Verify(pk, τ, ~m, σ): given pk, a signature σ = (σ1, σ2, s) and a message (τ, ~m), where τ ∈
{0, 1}L and ~m is a vector (m1, . . . ,mn) ∈ (Zp)n, return 0 if ~m = ~0. Otherwise, return 1 if

e(σ1, g) = e(gm1
1 · · · gmnn · vs, gα) · e(HG(τ), σ2)

and 0 otherwise.

This scheme can be seen as a specific instantiation of the template where the group G1 is a
product G1 = G2×Zp, which is a group for the operation (·, ·,+), and G2 = GT . Here, G1 and
G2 thus have order p3 and p, respectively. As for the linear function F , it can be instantiated
as

F
(
(σ1, σ2, s), ~m, pk, τ

)
:= e(σ1, g

−1) · e(HG(τ), σ2) · e(gm1
1 · · · gmnn · vs, gα) .

34 Benôıt Libert et al.

As a result, we obtain a new non-interactive simulation-sound trapdoor commitment to vectors
under the CDH assumption. We note that the scheme can be optimized by removing the terms
vs and s, so as to have (σ1, σ2) =

(
(
∏n
i=1 g

mi
i)α ·HG(τ)r, gr

)
and

F
(
(σ1, σ2), ~m, pk, τ

)
:= e(σ1, g

−1) · e(HG(τ), σ2) · e(gm1
1 · · · gmnn , gα) .

Indeed, in the proof of Lemma 8 in [12], we observe that, if the signature scheme only needs
to be secure against Type I attacks, the terms (vs, s) ∈ G× Zp can be eliminated.

Unlike the CDH-based construction of [40], the above commitment scheme is non-interactive
and allows committing to vectors with a constant-size commitment string. Unlike the solution
consisting in committing to a short string obtained by hashing the vector, our solution makes
it possible for the sender to prove properties (using Σ protocols or Groth-Sahai proofs) about
committed vectors in an efficient way.

We also remark that, for vectors of dimension n = 1, we obtain a simplification of existing
multi-trapdoor (or identity-based) trapdoor commitments [35,64] based on the Waters signa-
ture: instead of starting from a Σ protocol for proving knowledge of a Waters signature, we ob-
tain a more efficient scheme by building the commitment algorithm on the verification equation
of the underlying signature: recall that the verification equation of Waters signatures (σ1, σ2)
returns 1 if and only if it holds that e(σ1, g) = e(gα, h) · e(HG(M), σ2), where M ∈ {0, 1}L is
the message and gα, h are part of the public key. Now, to commit to a message m ∈ Zp the
sender can pick random θ1, θ2 ∈ G and compute com = e(gα, h)m · e(g, θ1) · e(HG(τ), θ2) ∈ GT
and dec = (θ1, θ2). It is easy to see that a signature (σ1, σ2) on τ allows trapdoor opening
com. Moreover, the resulting scheme gives shorter commitment string and a faster verification
algorithm than in [24,64].

Construction from the Strong Diffie-Hellman Assumption. As mentioned earlier, in the
application to non-malleable commitments, simulation-sound trapdoor commitments only need
to be secure against adversaries that choose beforehand (before receiving the public key) on
which tags they will see equivocations of commitments produced by FakeCom. In this case, we
only need the underlying linearly homomorphic signature to be secure against non-adaptive
Type I independent adversaries. The construction of Catalano, Fiore and Warinschi [27] is an
example of such system. In [27], it was implicitly6 proved that the scheme is secure against non-
adaptive (independent) Type I adversaries under the strong Diffie-Hellman assumption [15].

Keygen(λ, n): given a security parameter λ ∈ N and an integer n ∈ poly(λ), choose bilinear

groups (G,GT) of prime order p > 2λ. Choose α
R← Zp, g, v

R← G and gi
R← G for i = 1 to

n. Finally, define the identifier space T := Zp. The private key is sk := α and the public
key consists of

pk :=
(

(G,GT), g, gα, v, {gi}ni=1

)
.

Sign(sk, τ, ~m): given a vector ~m = (m1, . . . ,mn) ∈ Znp , a file identifier τ ∈ Zp and the private

key sk = α ∈ Zp, choose s
R← Zp. Then, compute a signature σ = (σ1, s) ∈ G× Zp where

σ1 =
(
gm1
1 · · · gmnn · vs

) 1
α+τ .

SignDerive(pk, τ, {(βi, σi)}`
i=1): given pk, a file identifier τ and ` tuples (βi, σi), parse each

signature σi as σi = (σi,1, si) for i = 1 to `. Then, compute

σ1 =
∏̀
i=1

σ
βi
i,1 , s =

∑̀
i=1

βi · si ,

and output (σ1, s).

6 Catalano et al. [27] consider a model where the file identifiers are always chosen by the
challenger at each signing query in the security game. However, the security proof of [27,
Lemma 1] does not require the file identifiers to be uniformly distributed and it goes through
if they are chosen by the adversary at the outset of the game instead of being chosen by the
reduction.

Linearly Homomorphic Structure-Preserving Signatures and Their Applications 35

Verify(pk, τ, ~m, σ): given the public key pk, a signature σ = (σ1, s) and a message (τ, ~m),
where τ ∈ Zp and ~m = (m1, . . . ,mn) ∈ (Zp)n, return 1 if and only if

e(σ1, g
τ · gα) = e(gm1

1 · · · gmnn · vs, g) .

This construction can also be seen as a special case of our template where G1 = G × Zp
is a group for the operation (·,+) and G2 = GT is a multiplicative group. Here, we thus have
|G1| = p2 and |G2| = p. The linear function F is now defined as

F
(
(σ1, s), ~m, pk, τ

)
:= e(σ1, g

τ · gα) · e(gm1
1 · · · gmnn · vs, g−1) .

The linearly homomorphic signature of [27] thus implies a non-interactive non-adaptive simula-
tion-sound trapdoor commitment to vectors based on the strong Diffie-Hellman assumption.
Again, the scheme can be simplified by removing the term vs since the underlying signature
only needs to be secure against non-adaptive Type I attacks. In the case n = 1, the resulting
non-malleable commitment is a variant of the one of [42, Section 4.2].

	Introduction
	Background
	Constructions of Linearly Homomorphic Structure-Preserving Signatures
	Applications
	Non-Malleable Trapdoor Commitments to Group Elements from Linearly Homomorphic Structure-Preserving Signatures
	Deferred Proofs for the Scheme in Section 3.2
	A Fully Randomizable Linearly Homomorphic SPS
	Definitions for Trapdoor Commitments
	Proof of Theorem 3
	Non-Interactive Simulation-Sound Trapdoor Commitments from Linearly Homomorphic Signatures in Groups of Public Order

