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Abstract. Group encryption (GE) is the encryption analogue of group
signatures. It allows a sender to verifiably encrypt a message for some
certified but anonymous member of a group. The sender is further able to
convince a verifier that the ciphertext is a well-formed encryption under
some group member’s public key. As in group signatures, an opening au-
thority is empowered with the capability of identifying the receiver if the
need arises. One application of such a scheme is secure repository at an
unknown but authorized cloud server, where the archive is made accessi-
ble by a judge order in the case of misbehavior, like a server hosting illegal
transaction records (this is done in order to balance individual rights and
society’s safety). In this work we describe Traceable GE system, a group
encryption with refined tracing capabilities akin to those of the primi-
tive of “traceable signatures” (thus, balancing better privacy vs. safety).
Our primitive enjoys the properties of group encryption, and, in addi-
tion, it allows the opening authority to reveal a user-specific trapdoor
which makes it possible to publicly trace all the ciphertexts encrypted
for that user without harming the anonymity of other ciphertexts. In ad-
dition, group members are able to non-interactively prove that specific
ciphertexts are intended for them or not. This work provides rigorous
definitions, concrete constructions in the standard model, and security
proofs.

Keywords: Group encryption, traceability, anonymity, provable security, stan-
dard model.

1 Introduction

Group signatures [10] are a fundamental privacy primitive allowing members
of a group to sign messages on behalf of the group while hiding their identity.
To deter abuses, an authority is capable of identifying the author of any valid
signature using privileged information. Group encryption (GE) is a primitive
suggested by Kiayias, Tsiounis and Yung [19], which is the encryption analogue
of group signatures [10]. Namely, it allows the sender of a ciphertext to hide the
identity of the receiver within a population of certified users —under the control
of a group manager (GM)— while providing universally verifiable guarantees
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that this receiver belongs to the group. If necessary, an opening authority (OA)
is empowered with a key allowing it to “open” a ciphertext and pin down the
receiver’s identity in the same way as group signatures can be opened. Moreover,
the system should support a mechanism allowing the sender to convince any
verifier that (1) the ciphertext is well-formed and intended for some registered
group member who will be able to decrypt; (2) the opening authority can identify
the receiver if the need arises; (3) the plaintext satisfies certain properties such
as being a witness for some public relation.

As a natural use case, group encryption allows a firewall to block all en-
crypted emails attempting to enter a network unless they are generated for
some certified organization member and they carry a proof of malware-freeness.
The GE primitive was also motivated by privacy applications such as anonymous
trusted third parties (TTP) or oblivious retriever storage. In optimistic proto-
cols, it allows verifiably encrypting messages to anonymous trusted third parties
which remain offline most of their lifetime and only wake up when there is a
problem to sort out. Group encryption provides a convenient way to hide the
identity of users’ preferred trusted third party, which can be a privacy-sensitive
piece information by itself as it can betray, e.g., the participant’s citizenship.

Group encryption also finds applications in cloud storage systems. When en-
crypting datasets on a remote storage server, the sender can convince this server
that the data is intended for some legitimate certified user without disclosing
the latter’s identity.

As exemplified in [19], group encryption also allows constructing hierarchical
group signatures [27], where signers can flexibly specify how a set of trustees
should operate to open their signatures.

Here we suggest a primitive extending the group encryption primitive and
describe a refined traceability mechanism analogous to the way traceable sig-
natures [18] extend group signatures. Specifically, when a given group member
is suspected of conducting illegal activities, the opening authority is able to re-
lease a trapdoor allowing anyone to publicly trace ciphertexts encrypted for this
member without affecting the anonymity of other users. As in the case of trace-
able signatures, the tracing trapdoor can be distributed to several tracing agents
who can proceed in parallel when it comes to search for a given group member’s
ciphertexts. In contrast, in ordinary GE schemes, this task requires the OA to
sequentially operate on all ciphertexts.

Related work. Kiayias, Tsiounis and Yung (KTY) [19] formalized the notion
of group encryption and provided a modular design using zero-knowledge proofs,
digital signatures, anonymous CCA-secure public-key encryption and commit-
ment schemes. They also gave an efficient instantiation using Paillier’s cryp-
tosystem [25] and Camenisch-Lysyanskaya signatures [8]. While efficient, their
scheme uses interactive proof systems. It can be made non-interactive using the
Fiat-Shamir paradigm [13] at the cost of relying on the random oracle model [4],
which is understood to only provide heuristic arguments in terms of security.

Qin et al. [26] considered a sort of group encryption mechanism with non-
interactive proofs and short ciphertexts. However, they appeal to random oracles



and interactive assumptions in their security analysis. A non-interactive realiza-
tion in the standard model was put forth by Cathalo, Libert and Yung [9]. More
recently, El Aimani and Joye [12] considered more efficient interactive and non-
interactive constructions using various optimizations.

As a matter of fact, none of the above solutions makes it possible to trace
specific users’ ciphertexts and only those ones. If messages encrypted for a spe-
cific misbehaving user have to be identified within a collection of, say n = 100000
ciphertexts, the opening authority has to open all of these in order to find those
it is looking for. This is clearly harmful to the privacy of honest users who lose
their anonymity just because they belong to the same group as a rogue user.
In [18], Kiayias, Tsiounis and Yung suggested a technique to address this con-
cern in the context of group signatures. To our knowledge, no real encryption
analogue of their primitive has been studied so far.

The closest work addressing the problem at hand is that of Izabachène, Point-
cheval and Vergnaud [17] who focus on eliminating subliminal channels by means
of randomizable encryption. However, their mediated traceable anonymous en-
cryption primitive does not provide all the functionalities we are aiming at. First,
their scheme only provides message confidentiality and anonymity against pas-
sive adversaries, who have no access to decryption oracles at any time. Second,
while their constructions enable individual user traceability, they do not provide
a mechanism allowing the authority to identify the receiver of a ciphertext in
O(1) time. If their scheme is set up for groups of up to n users, their opening
algorithm requires O(n) operations in the worst case. Finally, the schemes of [17]
provide no method allowing users to claim or disclaim ciphertexts they are the
recipients of or not without disclosing their private keys.

Our contribution. This paper suggests a primitive called traceable group
encryption (TGE) as the direct encryption analogue of traceable signatures, as
suggested by Kiayias, Tsiounis and Yung [18]. Beyond the usual functionalities of
group encryption, a TGE system allows the opening authority to reveal trapdoors
associated with specific group members. These trapdoors enable the recognition
of ciphertexts intended for these group members and leak no information about
the identity of other ciphertexts’ recipients. For example, when an employee
leaves a company, the firewall can use a tracing trapdoor to sieve out all incoming
ciphertexts encrypted for that former employee without learning anything else.
As in the traceable signature scenario [18], this implicit tracing process can be
run in parallel by clerks equipped with a copy of the tracing trapdoor.

In addition, similarly to the claiming mechanism of traceable signatures [18],
TGE schemes support a procedure whereby group members are able to claim
and prove that they are the legitimate receiver of some initially anonymous
ciphertexts. Moreover, we further consider the dual problem of allowing group
members to disclaim ciphertexts that are not encrypted under their public keys
(this feature was not part of the original traceable signature model but it can be
added on top of it in a modular way). Of course, our security notions explicitly
require that group members be unable to falsely claim or disclaim ciphertexts.



The above claiming and disclaiming capabilities can serve in certain appli-
cations like cloud storage. While storage servers may require anonymous data
retrievers to hold a certificate from some authority, the disclaiming procedure
allows group members to convince investigators that they are not the intended
recipient of some suspicious ciphertext without revealing their private key.

The first contribution of this paper is to define the primitive and to further
provide stringent security definitions for traceable group encryption systems: like
its group encryption counterpart [19], our model considers powerful adversaries
who have oracle access to the private key functionalities of all users and author-
ities. As a second contribution, we provide a concrete construction and prove its
security in the standard model under non-interactive assumptions. Our system is
not just a proof of concept. At the 128-bit security level, ciphertexts and proofs
fit within 2.18 and 9.38 kB, respectively. The efficiency is thus competitive with
that of state-of-the-art group signatures [15] or traceable signatures [22] relying
on non-interactive assumptions in the standard model.

2 Background

In the paper, when S is a set, x
R← S denotes the action of choosing x at random

in S. By a ∈ poly(λ), we mean that a is a polynomial in λ while b ∈ negl(λ) says
that b is a negligible function of λ. When a and b are two binary strings, a‖b
stands for their concatenation. For equal-dimension vectors ~A and ~B containing
group elements, ~A� ~B stands for their component-wise product.

2.1 Complexity Assumptions

We use groups (G,GT ) of prime order p with an efficiently computable map
e : G×G→ GT such that e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G, a, b ∈ Z and
e(g, h) 6= 1GT whenever g, h 6= 1G. In this setting, we consider several problems.

Definition 1 ([6]). The Decision Linear Problem (DLIN) in G, is to distin-

guish the distribution of D1 = {(g, ga, gb, gac, gbd, gc+d) | a, b, c, d R← Zp} from

the distribution D2 = {(g, ga, gb, gac, gbd, gz) | a, b, c, d, z R← Zp}.

We also rely on a problem whose generic hardness of which was proved in [1].

Definition 2 ([1]). In a group G of prime order p, the q-Simultaneous Flexible
Pairing Problem (q-SFP) is, given

(
gz, hz, gr, hr, a, ã, b, b̃

)
∈ G8 as well as q

tuples (zj , rj , sj , tj , uj , vj , wj) ∈ G7 such that

e(a, ã) = e(gz, zj)·e(gr, rj)·e(sj , tj) and e(b, b̃) = e(hz, zj)·e(hr, uj)·e(vj , wj) ,

to find a new tuple (z?, r?, s?, t?, u?, v?, w?) ∈ G7 satisfying the above equations
and such that z? 6∈ {1G, z1, . . . , zq}.

Definition 3 ([7]). The Decision 3-party Diffie-Hellman Problem (D3DH) in
G, is to distinguish the distributions (g, ga, gb, gc, gabc) and (g, ga, gb, gc, gz),

where a, b, c, z
R← Zp.



2.2 Groth-Sahai Proof Systems

In symmetric pairing configurations, the Groth-Sahai (GS) proof systems [16]
use a common reference string (CRS) consisting of three vectors ~g1, ~g2, ~g3 ∈ G3,
where ~g1 = (g1, 1, g), ~g2 = (1, g2, g) for some g1, g2 ∈ G. To commit to a group

element X ∈ G, the prover computes ~C = (1, 1, X) � ~g1
r � ~g2

s � ~g3
t with

r, s, t
R← Zp. When the proof system is configured to provide perfectly sound

proofs, ~g3 is set as ~g3 = ~g1
ξ1 � ~g2

ξ2 with ξ1, ξ2
R← Zp. In this case, commit-

ments ~C = (gr+ξ1t1 , gs+ξ2t2 , X ·gr+s+t(ξ1+ξ2)) can be interpreted as Boneh-Boyen-
Shacham (BBS) ciphertexts as X can be recovered by running the BBS decryp-
tion algorithm using the private key (α1, α2) = (logg(g1), logg(g2)). When the
CRS is set up to give perfectly witness indistinguishable (WI) proofs, ~g1, ~g2 and

~g3 are linearly independent vectors, so that ~C is a perfectly hiding commitment
to X ∈ G: a typical choice is ~g3 = ~g1

ξ1 � ~g2
ξ2 � (1, 1, g)−1. Under the DLIN as-

sumption, the two distributions of CRS are computationally indistinguishable.
To commit to an exponent x ∈ Zp, the prover computes ~C = ~ϕx � ~g1

r � ~g2
s,

with r, s
R← Zp, using a CRS containing ~ϕ, ~g1, ~g2. In the perfect soundness setting

~ϕ, ~g1, ~g2 are linearly independent (typically ~ϕ = ~g3 � (1, 1, g) where ~g3 = ~g1
ξ1 �

~g2
ξ2) whereas, in the perfect WI setting, choosing ~ϕ = ~g1

ξ1� ~g2ξ2 yields perfectly

hiding commitments since ~C is statistically independent of x.
Efficient NIWI proofs are available for pairing-product relations, which are

equations of the form
∏n
i=1 e(Ai,Xi) ·

∏n
i=1 ·

∏n
j=1 e(Xi,Xj)aij = tT , for vari-

ables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp, for
i, j ∈ {1, . . . , n}. Efficient proofs also exist for multi-exponentiation equations

like
∏m
i=1A

yi
i ·
∏n
j=1 X

bj
j ·

∏m
i=1 ·

∏n
j=1 X

yiγij
j = T , for variables X1, . . . ,Xn ∈ G,

y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G, b1, . . . , bn ∈ Zp and γij ∈ Zp,
for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Multi-exponentiation equations always admit non-interactive zero-knowledge
(NIZK) proofs at no additional cost. On a perfectly witness indistinguishable

CRS, a trapdoor (like the hidden exponents (ξ1, ξ2) ∈ Z2
p when ~g3 = ~g1

ξ1 �
~g2
ξ2 � (1, 1, g)−1) allows simulating proofs without knowing the witnesses and

simulated proofs are perfectly indistinguishable from real proofs. As for pairing-
product equations, zero-knowledge proofs are often possible – this is usually
the case when the right-hand-side member tT is a product of pairings involving
known group elements – but the number of group elements per proof may not be
constant anymore. Here, when using such NIZK simulators, we just introduce a
constant number of extra group elements in the proofs.

2.3 Chameleon Hash Functions

A chameleon hash function [21] is a tuple CMH = (CMKg,CMhash,CMswitch)
that contains an algorithm CMKg that, given a security parameter λ, outputs a
key pair (hk, tk)← G(λ). The hashing algorithm outputs y = CMhash(hk,m, r)
given the public key hk, a message m and random coins r ∈ Rhash. On in-
put of messages m,m′, random coins r ∈ Rhash and the trapdoor key tk, the



switching algorithm r′ ← CMswitch(tk,m, r,m′) computes r′ ∈ Rhash such
that CMhash(hk,m, r) = CMhash(hk,m′, r′). The collision-resistance property
mandates that it be infeasible to come up with pairs (m′, r′) 6= (m, r) such
that CMhash(hk,m, r) = CMhash(hk,m′, r′) without knowing the trapdoor key
tk. Uniformity guarantees that the distribution of hash values is independent
of the message m: for all hk, and all m,m′, the distributions {r ← Rhash :
CMHash(hk,m, r)} and {r ← Rhash : CMHash(hk,m′, r)} are identical.

3 Traceable Group Encryption

3.1 Syntax

Traceable group encryption (TGE) schemes involve a sender, a verifier, a group
manager (GM) that manages the group of receivers and an opening author-
ity (OA) that is able to uncover the identity of ciphertext receivers.

A group encryption system is formally specified by the description of a re-
lation R and a collection TGE =

(
SETUP, JOIN, 〈Gr,R, sampleR〉,ENC,DEC,

〈P,V〉,OPEN,REVEAL,TRACE,CLAIM/DISCLAIM,CLAIM-VERIFY,DISCLAIM-
VERIFY

)
of algorithms or protocols. Among these, SETUP is a set of initial-

ization procedures that all take (explicitly or implicitly) a security parameter
λ as input. They can be split into one that generates a set of public param-
eters param (a common reference string), one for the GM and another one for
the OA. We call them SETUPinit(λ), SETUPGM(param) and SETUPOA(param), re-
spectively. The latter two procedures are used to produce key pairs (pkGM, skGM),
(pkOA, skOA) for the GM and the OA. In the following, param is incorporated in
the inputs of all algorithms although we sometimes omit to explicitly write it.

JOIN = (Juser, JGM) is an interactive protocol between the GM and the
prospective user. As in [9], we will aim for two-message protocols: the first mes-
sage is the user’s public key pk sent by Juser to JGM and the latter’s response is
a certificate certpk for pk vouching for the user’s group membership. The user
is not required to prove knowledge of his private key sk. Valid public keys are
assumed to be publicly recognizable, so that proofs of validity are not necessary
either. After the execution of JOIN, the GM stores the public key pk and its
certificate certpk in a public directory database.

Algorithm sample allows sampling pairs (x,w) ∈ R (comprised of a public
value x and a witness w) using public / secret parameters (pkR, skR) produced
by Gr for R. Depending on the relation, skR may be the empty string, as in the
scheme we describe. The testing procedure R(x,w) returns 1 iff (x,w) ∈ R. To
encrypt a witness w such that (x,w) ∈ R for some public x, the sender picks
the pair (pk, certpk) from database and runs the encryption algorithm. The latter
takes as input w, a label L, the receiver’s pair (pk, certpk) as well as public keys
pkGM and pkOA. Its output is a ciphertext ψ ← ENC(pkGM, pkOA, pk, certpk, w, L).
On input of the same elements, the certificate certpk, the ciphertext ψ and the
random encryption coins coinsψ, the non-interactive algorithm P generates a
proof πψ that there exists a certified receiver whose public key was registered



in database and that is able to decrypt ψ and obtain a witness w such that
(x,w) ∈ R. The verification algorithm V takes as input ψ, pkGM, pkOA, πψ and
the description of R and outputs 0 or 1. Given ψ, L and the receiver’s private
key sk, the output of DEC is either a witness w such that (x,w) ∈ R or ⊥.

The next three algorithms provide explicit and implicit tracing capabilities.
First, OPEN takes as input a ciphertext/label pair (ψ,L) and the OA’s secret
key skOA and returns a receiver’s identity i. Algorithm REVEAL takes as input
the joining transcript transcripti of user i and allows the OA to extract a tracing
trapdoor tracei using its private key skOA. This tracing trapdoor can be subse-
quently used to determine whether or not a given ciphertext-label pair (ψ,L) is
a valid encryption under the public key pki of user i: namely, algorithm TRACE
takes in public keys pkGM and pkOA as well as a pair (ψ,L) and the tracing trap-
door tracei associated with user i. It returns 1 if and only if (ψ,L) is believed to
be a valid encryption intended for user i.

Finally, algorithms (CLAIM/DISCLAIM,CLAIM-VERIFY,DISCLAIM-VERIFY)
implement a functionality that allows user to convincingly claim or disclaim
being the legitimate recipient of a given anonymous ciphertext. Concretely,
CLAIM/DISCLAIM takes as input all public keys (pkGM, pkOA, pk), a ciphertext-
label pair (ψ,L) and a private key sk. It reveals a publicly verifiable piece of
evidence τ that (ψ,L) is or is not a valid encryption under the public key pk.
Algorithms CLAIM-VERIFY and DISCLAIM-VERIFY are then used to verify the
assertion established by τ . They take as input all public keys, a pair (ψ,L) and
a claim/disclaimer τ and output 1 or 0.

3.2 Security Definitions

Beyond the standard correctness requirement, our security model involves four
properties called message privacy, anonymity, soundness and claiming sound-
ness. In the definitions hereunder, we use the notation 〈outputA|outputB〉 ←
〈A(inputA), B(inputB)〉(common-input) to denote the execution of a protocol be-
tween A and B obtaining their own outputs from their respective inputs.

Correctness. The following experiment should return 1 w.h.p.

Experiment Exptcorrectness(λ)
param← SETUPinit(λ); (pkR, skR)← Gr(λ); (x,w)← sampleR(pkR, skR);
(pkGM, skGM)← SETUPGM(param); (pkOA, skOA)← SETUPOA(param);
〈pki, ski, certpki |pki, certpki〉 ← 〈Juser, JGM(skGM)〉(pkGM);
ψ ← ENC(pkGM, pkOA, pki, certpki , w, L);
πψ ← P(pkGM, pkOA, pki, certpki , x, w, L, ψ, coinsψ);
If
(
(w 6= DEC(ski, ψ, L)) ∨ (i 6= OPEN(skOA, ψ, L))
∨ (V(ψ,L, πψ, pkGM, pkOA) = 0)

)
return 0 else return 1.

Message privacy. This property is defined by an experiment where the ad-
versary has access to oracles that may be stateless or maintain a state across
queries:



– DEC(sk): is an oracle for the user decryption function. When it is restricted

not to decrypt a ciphertext-label pair (ψ,L), we denote it by DEC¬〈ψ,L〉.
– CHbror(λ, pk, w, L): is a real-or-random challenge oracle that is only queried

once. It returns (ψ, coinsψ) such that ψ ← ENC(pkGM, pkOA, pk, certpk, w, L)
if b = 1 whereas, if b = 0, ψ ← ENC(pkGM, pkOA, pk, certpk, w

′, L) encrypts a
random plaintext uniformly chosen in the space of plaintexts of length O(λ).
In either case, coinsψ are the random coins used to generate ψ.

– PROVEbP,P′(pkGM, pkOA, pk, certpk, pkR, x, w, ψ, L, coinsψ): is a stateful ora-
cle that the adversary can query on multiple occasions. If b = 1, it runs the
real prover P on the inputs to produce an actual proof πψ. If b = 0, the
oracle runs a simulator P ′ that uses the same inputs as P except w and
coinsψ and generates a simulated proof.

– CLAIM/DISCLAIM(pkGM, pkOA, ψ, L, sk): is a stateful oracle that generates
claims or disclaimer proofs for arbitrary ciphertexts. Specifically, the oracle
first uses the private key sk to determine whether (ψ,L) is a valid ciphertext-
label pair w.r.t. the public key pk. If so, the oracle uses sk to compute and
return a non-interactive claim τ for ψ. Otherwise, the oracle generates a
disclaimer proof τ showing that (ψ,L) is not a valid encryption under pk. In
either case, (ψ,L) is stored in a list claims, which is initially empty.

These oracles are used in an experiment where the adversary controls the GM,
the OA and all members but the honest receiver. The adversary A is the dishon-
est GM that certifies the honest receiver in an execution of JOIN. It has oracle
access to the decryption function DEC of that receiver. At the challenge phase, it
probes the challenge oracle for a label and a pair (x,w) ∈ R of her choice. After
the challenge phase, A can also invoke the PROVE oracle on multiple occasions
and eventually aims to guess the bit b chosen by the challenger.

As pointed out in [19], designing an efficient simulator P ′ (for executing
PROVEbP,P′(.) when b = 0) is part of the security proof and might require a
simulated common reference string.

Definition 4. A TGE scheme satisfies message security if, for any PPT adver-
sary A, the experiment below returns 1 with probability at most 1/2 + negl(λ).

Experiment ExptsecA (λ)
param← SETUPinit(λ); (aux, pkGM, pkOA)← A(param);
〈pk, sk, certpk|aux〉 ← 〈Juser,A(aux)〉(pkGM);
(aux, x, w, L, pkR)← ADEC(sk,.), CLAIM/DISCLAIM(pkGM,pkOA,.,.,sk)(aux);

If (x,w) 6∈ R return 0; b
R← {0, 1}; (ψ, coinsψ)← CHbror(λ, pk, w, L);

b′ ← APROVEbP,P′ (pkGM,pkOA,pk,certpk,pkR,x,w,ψ,L,coinsψ),DEC¬〈ψ,L〉(sk,.),

CLAIM/DISCLAIM(pkGM,pkOA,.,.,sk)(aux, ψ);
If b = b′ return 1 else return 0.

Anonymity. In anonymity attacks, the adversary controls the entire system
except the opening authority. One way to jeopardize the anonymity property
is to mount a chosen-ciphertext attack on the encryption scheme used by the



OA. A difference with the usual group encryption scenario is that we must
pay attention to the information revealed by the traceability components of
ciphertexts. Throughout the game, the adversary can act as a dishonest group
manager and register honest users in the system. In the challenge phase, the
adversary A chooses a pair (x,w) ∈ R and the public keys pk0, pk1 of two honest
users. In return, it receives an encryption of w under the public key pkb for some
b ∈ {0, 1} chosen by the challenger. It has access to the following oracles:

– USER(pkGM): is a stateful oracle simulating executions of Juser on behalf of
new honest users who are requested to join the group. It uses an initially
empty list keys. At its i-th invocation, the output (i, pki, ski, certpki) of Juser
is stored in keys if the adversary, which emulates the GM, provides a valid
certificate certpki . If the JOIN protocol does not successfully terminate, the
oracle stores (i,⊥) in keys.

– CORR(.): is a stateful oracle that allows the adversary to corrupt honest
group members. When invoked on input of an index i, the oracle first checks
if the list keys contains an entry of the form (i, pki, ski, certpki). If so, it
returns ski and adds i to the set Corr, which is initially empty.

– DEC(., .): is a stateless decryption oracle that provides a decryption capa-
bility for each secret key. It takes as input an index i and a ciphertext-label
pair (ψ,L). It first checks if the list keys contains an entry of the form
(i, pki, ski, certpki). If no such entry exists, it returns ⊥. Otherwise, it uses
ski to run DEC on the input (ψ,L) and returns the result. When this oracle
is restricted not to decrypt a ciphertext-label pair (ψ,L) for some user index

i ∈ {i0, i1}, we denote it by DEC¬{i0,i1}×〈ψ,L〉.
– OPEN(skOA, .): is a stateless oracle that runs the opening algorithm on behalf

of the OA. On input of a TGE ciphertext, it returns the receiver’s identity i.
– REVEAL(skOA, .): is an oracle that takes as input a user index i and simulates

the REVEAL algorithm on behalf of the OA. If no user was assigned the index
i in keys, it returns ⊥. Otherwise, it recovers the transcript transcripti of user
i in database and uses skOA to extract and return the i-th group member’s
tracing trapdoor tracei. It also adds i to the set Revs.

– CHbanon(pkGM, pkOA, pk0, pk1, w, L): is a challenge oracle that can only be
queried once. It returns a pair (ψ, coinsψ) consisting of a ciphertext ψ ←
ENC(pkGM, pkOA, pkb, certpkb , w, L) and the coin tosses used to generate ψ.

– P(pkGM, pkOA, pkb, certpkb , pkR, x, w, ψ, L, coinsψ): is a stateful oracle which
can be queried several times after the challenge phase. It runs the real prover
P on the inputs to produce an actual proof πψ using the random coins coinsψ
involved in the generation of the challenge. It returns the resulting proof πψ.

– CLAIM/DISCLAIM(pkGM, pkOA, ψ, L, i): is a stateful oracle. It takes as input
an index i and a ciphertext/label pair. It first checks whether keys contains a
tuple transcripti = (i, pki, ski, certpki). If not, it returns ⊥. Otherwise, it uses
the private key ski to determine whether (ψ,L) is a valid ciphertext-label
pair w.r.t. the public key pki. If yes, the oracle uses ski to generate a non-
interactive claim τ for (ψ,L). Otherwise, the oracle generate a disclaimer τ
guaranteeing that (ψ,L) is not a valid encryption under pki. In either case,
(i, ψ, L) is stored in a list claims, which is initially empty.



Definition 5. A TGE scheme satisfies anonymity if, for any PPT adversary A,
the experiment below returns 1 with a probability not exceeding 1/2 + negl(λ).

Experiment ExptanonA (λ)
param← SETUPinit(λ); (pkOA, skOA)← SETUPOA(param);
(aux, pkGM)← A(param, pkOA);
(i0, i1, aux, x, w, L, pkR)← AUSER(pkGM), OPEN(skOA,.),

REVEAL(skOA,.), DEC(.,.), CLAIM/DISCLAIM(pkGM,pkOA,.,.,.), CORR(.)(aux);
If (i0, pk0, sk0, certpk0) 6∈ keys ∨ (i1, pk1, sk1, certpk1) 6∈ keys return 0;

If (x,w) 6∈ R return 0; b
R← {0, 1};

(ψ, coinsψ)← CHbanon(pkGM, pkOA, pk0, pk1, w, L);

b′ ← AUSER(pkGM), P(pkGM,pkOA,pkb,certpkb ,x,w,ψ,L,coinsψ), OPEN¬〈ψ,L〉(skOA,.), CORR(.)

REVEAL¬{i0,i1}(skOA,.), DEC¬{i0,i1}×〈ψ,L〉(.,.), CLAIM/DISCLAIM(pkGM,pkOA,.,.,.)(aux, ψ);
If
(
(i0, ψ, L) ∈ claims

)
∨
(
(i1, ψ, L) ∈ claims

)
return 0;

If (i0 ∈ Revs ∪ Corr) ∨ (i1 ∈ Revs ∪ Corr) return 0;
If b = b′ return 1 else return 0.

As shown in [19], TGE schemes satisfying the above notion necessarily subsume
a key-private (a.k.a. receiver anonymous) [3] cryptosystem.

Soundness. In a soundness attack, the adversary creates the group of receivers
by interacting with the honest GM. Its goal is to create a ciphertext ψ and
a convincing proof that ψ is valid w.r.t. a relation R of its choice but either
(1) the opening fails to identify a certified group member as the legitimate
recipient of ψ; (2) the implicit tracing mechanism TRACE does not point to
the group member pinned down by OPEN; (3) the ciphertext C is not in the
language Lx,L,pkR,pkGM,pkOA,pki = {ENC(pkGM, pkOA, pki, certpki , w, L) | (x,w) ∈
R; (pki, certpki) ∈ valid}, where valid is the set of properly certified keys. This
notion is formalized by a game where the adversary is given access to a user regis-
tration oracle REG(skGM, .) that emulates JGM. This oracle maintains a repository
database where registered public keys and their certificates are stored.

Definition 6. A TGE scheme is sound if, for any PPT adversary A, the exper-
iment below returns 1 with negligible probability.

Experiment ExptsoundnessA (λ)
param← SETUPinit(λ); (pkOA, skOA)← SETUPOA(param);
(pkGM, skGM)← SETUPGM(param);
(pkR, x, ψ, πψ, L, aux)← AREG(skGM,.)(param, pkGM, pkOA, skOA);
If V(ψ,L, πψ, pkGM, pkOA) = 0 return 0;
i← OPEN(skOA, ψ, L);
If
(
(i =⊥) ∨ (ψ 6∈ Lx,L,pkR,pkGM,pkOA,pki)

)
then return 1;

tracei ← REVEAL(transcripti, skOA);
If
(
i 6= TRACE(pkGM, pkOA, ψ, tracei)

)
then return 1;

Return 0.



The above properties are similar to those for group encryption. We need to
introduce the new notion of claiming soundness (which is not part of the group
encryption model [19]) that formalizes the soundness of the claiming process.

Claiming soundness. The last security notion considers an adversary attack-
ing the soundness of the claiming algorithm by either claiming other users’ ci-
phertexts as its own or disclaiming ciphertexts that are actually encrypted under
its public key. Moreover, the verifier of a claim/disclaimer should be convinced of
the group member’s intentionality to claim or repudiate ciphertexts. We require
that only users be able to claim/disclaim ciphertexts encrypted under their key
or not: even the sender (who knows the encryption coins) should not do this.

In the model, the adversary controls the GM and the OA. It has access to ora-
cles USER(pkGM), CORR(.), DEC(., .) and CLAIM/DISCLAIM(pkGM, pkOA, ψ, L, i),
which are identical to those of the anonymity property.

The adversary’s goal is to create a public repository database satisfying
the integrity check, a ciphertext ψ and a statement statement consisting of a
claim/disclaimer τ and a public key pk but either: (1) the implicit tracing mech-
anism TRACE does not point to the group member i pinned down by OPEN;
(2) statement = (τ, pk) is a valid claim although pk 6= pki, where pki is associ-
ated with user i in database; (3) statement = (τ, pk) is a valid disclaimer whereas
pk = pki coincides with the public key associated with user i in database; (4)
statement = (τ, pkj) is a valid claim/disclaimer for the public key pkj of some
uncorrupted user j ∈ database\Corr in the database and the pair (τ, pkj) was
not produced by the CLAIM/DISCLAIM oracle.

Definition 7. A TGE scheme provides claiming-soundness if, for any PPT ad-
versary A, the experiment below returns 1 with negligible probability.

Experiment Exptclaiming-soundness
A (λ)

param← SETUPinit(λ); (pkGM, aux0)← A(param);
(pkOA, skOA)← SETUPOA(param);
(pk?R, x

?, ψ?, L?, π?ψ, statement?, database?, aux)← AUSER(pkGM), CORR(.),

DEC(.,.), CLAIM/DISCLAIM(pkGM,pkOA,.,.,.)(param, pkOA, skOA, aux0);
If DATABASE-CHECK(param, database) = 0 return 0;
If V(ψ?, L?, π?ψ, pkGM, pkOA) = 0 return 0;

i← OPEN(skOA, ψ
?, L?); tracei ← REVEAL(transcripti, skOA);

If
(
i 6= TRACE(pkGM, pkOA, ψ

?, tracei)
)

then return 1;
If
(
statement? = (τ?, pk?) s.t. (pk? 6= pki)
∧ CLAIM-VERIFY(pkGM, pkOA, ψ

?, L?, pk?, τ?
)

= 1
)

then return 1;
If
(
statement? = (τ?, pk?) s.t. (pk? = pki)
∧ DISCLAIM-VERIFY(pkGM, pkOA, ψ

?, L?, pk?, τ?
)

= 1
)

then return 1;

If
(
statement? = (τ?, pkj) s.t. (j, pkj , certj , .) ∈ database ∧ (j 6∈ Corr)

∧ (ψ?, L?, pkj) 6∈ Qc ∧
(
CLAIM-VERIFY(pkGM, pkOA, ψ

?, L?, pkj , τ
?
)

= 1

∨ DISCLAIM-VERIFY(pkGM, pkOA, ψ
?, L?, pkj , τ

?
)

= 1
))

then return 1;

Return 0.



In the above notations, Qc is the set of CLAIM/DISCLAIM queries made by A.
We note that there is no need for a REVEAL oracle in the definition. Indeed,

since A knows skOA, it can obtain tracing trapdoors by itself, by decrypting the
verifiable encryptions sent by honest users when the USER oracle is invoked.

4 A Non-Interactive Traceable Group Encryption Scheme

We use the Libert-Yung (LY) scheme [23], which is a publicly verifiable variant
of Cramer-Shoup [11]. We take advantage of the observation that, if certain pub-
lic key components are shared by all users as common public parameters, the
scheme can simultaneously provide receiver anonymity and publicly verifiable
ciphertexts. In other words, anyone can publicly verify that a ciphertext is valid
without knowing who the receiver is. When proofs are generated for the cipher-
text, this saves the prover from having to provide evidence that the ciphertext
is valid and thus yields shorter proofs.

The message is encrypted under the receiver’s public key using the LY scheme.
At the same time, the two last components of the receiver’s public key is en-
crypted under the public key of the opening authority using Kiltz’s encryption
scheme [20]. We use this scheme because it is the most efficient DLIN-based
CCA2-secure cryptosystem where the validity of ciphertexts is publicly verifi-
able and we do not need it to hide the public key under which it is generated.

When new users join the group, the GM provides them with a membership
certificate made of a structure-preserving signature [14,1,2] on their public key
which comprises group elements (X1, X2). We chose to work with the scheme
of Abe, Haralambiev and Ohkubo (AHO) [1,2] because it allows working exclu-
sively with linear pairing-product equations and thus obtain a better efficiency.

The implicit tracing mechanism must allow the OA to disclose user-specific
tracing trapdoors. To this end, we include in each membership certificate a
pair (Γ1, Γ2) = (gγ1 , gγ2) ∈ G2, where (γ1, γ2) ∈ Z2

p are part of the user’s pri-
vate key. When users join the group, they are thus requested to produce a pair
(Γ1, Γ2) = (gγ1 , gγ2) for which gγ1γ2 will serve as a tracing trapdoor for them.
Since gγ1γ2 cannot be publicly revealed, we appeal to a verifiable encryption
mechanism as was suggested in [5] in a related context: namely, the prospective
user provides the GM with an encryption Φvenc of gγ1γ2 under the OA’s public
key and generates a non-interactive proof that the encrypted value is indeed an
element gγ1γ2 such that (g, gγ1 , gγ2 , gγ1γ2) is a Diffie-Hellman tuple. The REVEAL
algorithm thus uses the OA’s private key to decrypt Φvenc so as to expose gγ1γ2 .
Armed with the information tracei = gγ1γ2 , a tracing agent can test whether a
ciphertext ψ is prepared for user i as follows. We require each ciphertext ψ to

contain elements of the form (T1, T2, T3) = (gδ, Γ
δ/%
1 , Γ %2 ), where δ, % ∈R Zp are

chosen by the sender. Since (Γ1, Γ2) = (gγ1 , gγ2), the TRACE algorithm concludes
that user i is indeed the receiver if e(T1, g

γ1γ2) = e(T2, T3). At the same time,
we can show that recognizing ciphertexts encrypted for user i without tracei is
as hard as solving the D3DH problem.

For technical reasons, we need to introduce an extra traceability component



T4 = (ΛVK
0 · Λ1)δ, where Λ0, Λ1 ∈ G are part of common public parameters and

VK is the verification key of a one-time signature. The reason is that, in order
to prove anonymity in our model, we need to bind (T1, T2, T3) to the one-time
verification key VK in a non-malleable way. Otherwise, an anonymity adversary
could break the anonymity by having access to a CLAIM/DISCLAIM oracle.

In order to prove or disprove that he is the intended recipient of a given pair

(ψ,L), a user i can use the traceability components (T1, T2, T3) = (gδ, Γ
δ/%
1 , Γ %2 )

of ψ and his private key γ1 = logg(Γ1) to compute Γ δ1 = T γ11 (although he does

not know δ), which allows anyone to realize that (g, T1, Γ1, Γ
δ
1 ) forms a Diffie-

Hellman tuple and that e(Γ δ1 , Γ2) = e(T2, T3). This is sufficient for proving that
(ψ,L) was created for the public key pk = (X1, X2, Γ1, Γ2). In order to make sure
that only the user will be able to compute non-interactive claims, we also require
him to provide a non-interactive proof of knowledge of Γ−1 = g1/γ1 satisfying
e(Γ δ1 , Γ−1) = e(T1, g). Moreover, the claim is non-malleably bound to (ψ,L, pk)
– where pk is the claimer’s public key —by generating the non-interactive Groth-
Sahai proof for a CRS (~g1, ~g2,~hv) that depends on the ciphertext which is being
claimed and the receiver’s public key (the idea of data-dependent CRS is bor-
rowed from [24]): this prevents malicious users from convincingly claiming other
users’ ciphertexts. To eliminate an annoying case in the proof of anonymity, we
chose to derive the vector ~hv from a bit string obtained by applying a chameleon
hash function [21] (rather than a an ordinary hash function) to (ψ,L, pk).

We build a non-interactive group encryption scheme for the Diffie-Hellman
relation R = {(X,Y ),W} where e(g,W ) = e(X,Y ), for which the keys are
pkR = {G,GT , g} and skR = ε.

SETUPinit(λ) : Let ` ∈ poly(λ) be a polynomial, where λ ∈ N is the security
parameter.
1. Choose bilinear groups (G,GT ) of prime order p > 2λ with g, g1, g2,

Λ0, Λ1
R← G. Construct a perfectly sound Groth-Sahai CRS g = (~g1, ~g2, ~g3)

using ~g1 = (g1, 1, g), ~g2 = (1, g2, g) and ~g3 = ~g1
ξ1� ~g2ξ2 with ξ1, ξ2

R← Zp.
2. For i = 0 to ` choose ζi,1, ζi,2

R← Zp and set ~hi = ~g1
ζi,1 � ~g2

ζi,2 so as to

obtain vectors {~hi}`i=0.

3. Choose η1, η2
R← Zp and compute ~f = ~g1

η1 � ~g2
η2 = (f3,1, f3,2, f3,3) so

as to form another CRS f = (~g1, ~g2, ~f).
4. Select a strongly unforgeable one time signature Σ = (G,S,V) and a

chameleon hash function CMH = (CMKg,CMhash,CMswitch) with a key
pair (hk, tk)← G(λ). Public parameters are

param = {λ,G,GT , g, ~g1, ~g2, ~g3, ~f , {~hi}`i=0, Λ0, Λ1, Σ, CMH , hk}.
SETUPGM(param) : This algorithm runs the setup algorithm of the structure-

preserving signature of Abe et al. [1] for messages of length n = 4. The
secret key is skGM =

(
αa, αb, γz, δz, {γi, δi}4i=1

)
while the public key consists

of pkGM =
(
Gr, Hu, Gz, Hz, {Gi, Hi}4i=1, Ωa, Ωb

)
∈ G8 ×G2

T .

SETUPOA(param) : generates pkOA = (Y1, Y2, Y3, Y4) = (gy1 , gy2 , gy3 , gy4), as a
public key for Kiltz’s encryption scheme [20], and the corresponding private
key as skOA = (y1, y2, y3, y4).



JOIN : The prospective user Ui and the GM run the following protocol.
1. Ui picks x1, x2, z, γ1, γ2

R← Zp and computes pk = (X1, X2, Γ1, Γ2), where

X1 = gx1
1 · gz , X2 = gx2

2 · gz , Γ1 = gγ1 , Γ2 = gγ2 .

The private key is defined to be sk = (x1, x2, z, γ1, γ2). Here, (X1, X2)
form a public key for the LY encryption scheme recalled in [23] whereas
(Γ1, Γ2) will provide user traceability.

2. Ui defines Γ0 = gγ1γ2 and generates a verifiable encryption of Γ0 un-

der pkOA. To this end, he chooses w1, w2
R← Zp and computes Φvenc =

(Φ0, Φ1, Φ2) =
(
Γ0·gw1+w2 , Y w1

1 , Y w2
2

)
. Then, Ui generates a NIZK proof

πvenc that Φvenc encrypts Γ0 such that e(Γ0, g) = e(Γ1, Γ2). Namely, Ui
uses the CRS f = (~g1, ~g2, ~f) to generate GS commitments ~CW1

, ~CW2
to

the group elements W1 = gw1 and W2 = gw2 , respectively, and non-
interactively prove that e(Φ0, g) = e(Γ1, Γ2) · e(g,W1) · e(g,W2) and

e(Φ1, g) = e(Y1,W1) e(Φ2, g) = e(Y2,W2) .

These are linear pairing product equations. However, since their proofs
must be NIZK proofs, they cost 21 group elements to prove altogether
We denote by πvenc the resulting NIZK proof. The prospective user Ui
then sends to the group manager a certification request consisting of(
pk = (X1, X2, Γ1, Γ2), Φvenc, ~CW1

, ~CW2
, πvenc

)
.

3. If database already contains a record transcriptj for which the certi-
fied public key pkj = (Xj,1, Xj,2, Γj,1, Γj,2) is such that (X1, X2) =
(Xj,1, Xj,2) or e(Γj,1, Γj,2) = e(Γ1, Γ2), the GM returns ⊥. Otherwise,
the GM generates a certificate certpk = (Z,R, S, T, U, V,W ) ∈ G7 for pk,
which consists of an AHO signature on the tuple (X1, X2, Γ1, Γ2). Then,
it stores the entire interaction transcript

transcripti =
(
pk = (X1, X2, Γ1, Γ2), (Φvenc, ~CW1

, ~CW2
, πvenc), certpk

)
in database. We also define the DATABASE-CHECK algorithm in such
a way that it returns 0 (meaning that database is not well-formed)
if database contains two distinct records transcripti and transcriptj for
which the corresponding public keys pki = (Xi,1, Xi,2, Γi,1, Γi,2) and
pkj = (Xj,1, Xj,2, Γj,1, Γj,2) are such that (Xi,1, Xi,2) = (Xj,1, Xj,2) or
e(Γi,1, Γi,2) = e(Γj,1, Γj,2). Otherwise, it returns 1.

ENC(pkGM, pkOA, pk, certpk,M,L) : To encrypt M ∈ G s.t. ((A,B),M) ∈ Rdh
(for public A,B ∈ G), parse pkGM, pkOA and pk as (X1, X2, Γ1, Γ2) ∈ G4.

1. Generate a one-time signature key pair (SK,VK)← G(λ).

2. Generate traceability components (T1, T2, T3, T4) ∈ G4 by choosing δ, %
R←

Zp and computing T1 = gδ, T2 = Γ
δ/%
1 , T3 = Γ %2 and T4 = (ΛVK

0 · Λ1)δ.
3. Compute a LY encryption of M under the label L. Namely,

(a) Choose θ1, θ2
R← Zp and compute C0 = M · Xθ1

1 · X
θ2
2 , C1 = gθ11 ,

C2 = gθ22 and C3 = gθ1+θ2 .



(b) Construct a vector ~gVK = ~g3 ·(1, 1, g)VK and use gVK = (~g1, ~g2, ~gVK) as
a Groth-Sahai CRS to generate a NIZK proof that (g, g1, g2, C1, C2, C3)

form a linear tuple. More precisely, generate commitments ~Cθ1 , ~Cθ2
to θ1, θ2 ∈ Zp (namely, compute ~Cθi = ~g θi

VK · ~g1
ri · ~g2si with ri, si

R← Zp
for each i ∈ {1, 2}) and a proof πLIN that they satisfy

C1 = gθ11 , C2 = gθ22 , C3 = gθ1+θ2 . (1)

The whole proof for (1) consists of ~Cθ1 , ~Cθ2 and πLIN is obtained as

πLIN = (π1, π2, π3, π4, π5, π6) =
(
gr11 , g

s1
1 , g

r2
2 , g

s2
2 , g

r1+r2 , gs1+s2
)
.

(c) Define the partial LY ciphertext ψLY = (C0, C1, C2, C3, ~Cθ1 ,
~Cθ2 , πLIN).

4. For i = 1, 2, choose zi,1, zi,2
R← Zp and encrypt Γi under pkOA using

Kiltz’s cryptosystem using the same one-time verification key VK as in
step 1. Let {ψKi}i=1,2 be the ciphertexts.

5. Set the TGE ciphertext ψ as ψ = VK‖(T1, T2, T3, T4)‖ψLY‖ψK1
‖ψK2

‖σ
where σ = S(SK, ((T1, T2, T3, T4)‖ψLY‖ψK1

‖ψK2
‖L)).

Return (ψ,L) and coinsψ consist of δ, %, {(zi,1, zi,2)}2i=1 and (θ1, θ2). If the
one-time signature of [14] is used, the pair (VK, σ) takes 5 group elements,
so that ψ comprises 35 elements of G.

P(pkGM, pkOA, pk, certpk, (X,Y ),M, ψ, L, coinsψ) : Parse pkGM, pkOA, pk and ψ

as above. Using the vectors f = (~g1, ~g2, ~f) as a Groth-Sahai CRS, generate
a non-interactive proof for ψ.
1. Parse certpk as (Z,R, S, T, U, V,W ) ∈ G7 and re-randomize it to ob-

tain (Z ′, R′, S′, T ′, U ′, V ′)← ReRand(pkGM, (Z,R, S, T, U, V,W )) (as ex-

plained in [1]). Generate GS commitments ~CZ′ , ~CR′ , ~CU ′ to Z ′, R′ and

U ′. Then, set comcertpk = (~CZ′ , ~CR′ , ~CU ′ , S
′, T ′, V ′,W ′) ∈ G13.

2. Generate Groth-Sahai commitments to the components of the public key
pk = (X1, X2, Γ1, Γ2) and obtain the set compk = {~CXi , ~CΓi}i=1,2, which
consists of 12 group elements.

3. Generate a proof πcertpk that comcertpk is a commitment to a valid certifi-
cate for the public key contained in compk. The proof πcertpk is a NIWI
that (Z ′, R′, S′, T ′, U ′, V ′) is a valid AHO signature on pk.

4. Generate a NIZK proof πT that (T1, T2, T3) = (gδ, Γ
δ/%
1 , Γ %2 ) for some

δ, % ∈ Zp. To this end, generate a commitment ~CΥ to the group element
Υ = gδ/% and generate a NIZK proof that

e(Υ, T3) = e(T1, Γ2) , e(T2, g) = e(Γ1, Υ ) .

5. For i = 1, 2, generate NIZK proofs πeq-key,i that ~CΓi and ψKi are en-
cryptions of the same Γi. If ψKi = (Vi,0, Vi,1, Vi,2, Vi,3, Vi,4) is a Kiltz
encryption comprising

(
Vi,0, Vi,1, Vi,2) =

(
Γi · gzi,1+zi,2 , Y

zi,1
1 , Y

zi,2
2

)
and

~CΓi is parsed as (cΓi1 , cΓi2 , cΓi3) =
(
gρi11 ·f

ρi3
3,1 , g

ρi2
2 ·f

ρi3
3,2 , Γi·gρi1+ρi2 ·f

ρi3
3,3

)
,

where zi,1, zi,2 ∈ coinsψ, ρi1, ρi2, ρi3 ∈ Zp and ~f = (f3,1, f3,2, f3,3), this



amounts to prove knowledge of values zi,1, zi,2, ρi1, ρi2, ρi3 ∈ Zp such

that
(
Vi,1
cΓi1

,
Vi,2
cΓi2

,
Vi,0
cΓi3

)
is of the form(

Y
zi,1
1 · g−ρi11 · f−ρi33,1 , Y

zi,2
2 · g−ρi22 · f−ρi33,2 , gzi,1+zi,2−ρi1−ρi2 · f−ρi33,3

)
.

6. Generate a NIZK proof πR that ψLY encrypts a group element M ∈ G
such that ((A,B),M) ∈ R. To this end, generate a commitment comM =
(cM,1, cM,2, cM,3) =

(
gρ11 · f

ρ3
3,1, g

ρ2
2 · f

ρ3
3,2,M · gρ1+ρ2 · f

ρ3
3,3

)
and prove that

the underlying M is the same as the one for which C0 = M ·Xθ1
1 ·X

θ2
2

in ψLY. In other words, prove knowledge of θ1, θ2, ρ1, ρ2, ρ3 such that(
C1, C2,

C1

cM,1
, C2

cM,2
, C0

cM,3

)
equals(

gθ1 , g
θ
2 , g

θ1−ρ1
1 · f−ρ33,1 , gθ2−ρ22 · f−ρ33,2 , g−ρ1−ρ2 · f−ρ33,3 ·X

θ1
1 ·X

θ2
2

)
.

The entire proof πψ = comcertpk‖compk‖πcertpk‖πT ‖πeq-key,1‖πeq-key,2‖πR takes
150 elements.

V(param, ψ, L, πψ, pkGM, pkOA) : Parse pkGM, pkOA, pk, ψ and πψ as above. Re-
turn 1 if and only if the conditions below are all satisfied.

1. V(VK, σ, ((T1, T2, T3, T4)‖ψLY‖ψK1
‖ψK2

‖L)) = 1.
2. e(T1, Λ

VK
0 · Λ1) = e(g, T4) and ψLY is a valid LY ciphertext.

3. All proofs verify and if {ψKi}2i=1 are valid Kiltz encryptions w.r.t. VK.
DEC(sk, ψ, L) : Parse ψ as VK‖(T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖σ. Return ⊥ in the

event that either: (i) V(VK, σ, ((T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖L)) = 0; (ii)
e(T1, Λ

VK
0 ·Λ1) 6= e(g, T4) or ψLY and {ψKi}i=1,2 are not all valid ciphertexts.

Otherwise, use sk to decrypt (ψLY, L).

REVEAL(transcripti, skOA) : Parse transcripti as(
(Xi,1, Xi,2, Γi,1, Γi,2), (Φvenc,i, ~CWi,1 ,

~CWi,2 , πvenc,i), certpk,i
)
.

Parse Φvenc,i as a BBS ciphertext (Φi,0, Φi,1, Φi,2) ∈ G3 and verify that

(~CWi,1
, ~CWi,2

, πvenc,i) form a valid proof fo. If not, return ⊥. Otherwise, use

skOA = (y1, y2, y3, y4) to compute Γi,0 = Φi,0 · Φ−1/y1i,1 · Φ−1/y2i,2 . Return the
resulting plaintext tracei = Γi,0 ∈ G which can serve as a tracing trapdoor

for user i as it is necessarily of the form Γi,0 = Γ
logg(Γi,1)

i,2 .
TRACE(pkGM, pkOA, ψ, tracei) : Given ψ = VK‖(T1, T2, T3, T4)‖ψLY‖ψK1

‖ψK2
‖σ

and the tracing trapdoor tracei as a group element Γi,0 ∈ G. If the equality
e(T1, Γi,0) = e(T2, T3) holds, it returns 1. Otherwise, it outputs 0.

OPEN(skOA, ψ, L) : Parse ψ as VK‖(T1, T2, T3, T4)‖ψLY‖ψK1
‖ψK2

‖σ. Return ⊥ if
{ψKi}2i=1 are not both valid ciphertexts w.r.t. VK or if σ is an invalid one-
time signature for VK. Otherwise, decrypt {ψKi}i=1,2 to obtain Γ1, Γ2 ∈ G
and look up database in order to find a record transcripti containing a key
pki = (Xi,1, Xi,2, Γi,1, Γi,2) such that (Γi,1, Γi,2) = (Γ1, Γ2) (note that, unless
database is ill-formed, such a record is unique if it exists). If such a record is
found, output the matching i. Otherwise, output ⊥.



CLAIM/DISCLAIM(pkGM, pkOA, ψ, L, sk) : Given sk = (x1, x2, z, γ1, γ2), parse ψ
as VK‖(T1, T2, T3, T4)‖ψLY‖ψK1

‖ψK2
‖σ. To generate a claim/disclaimer τ for

the ciphertext ψ, first verify that e(T1, Λ
VK
0 · Λ1) = e(g, T4) and that σ is

a valid one-time signature. If these conditions, do not hold, return ⊥. Oth-
erwise, compute Tδ,1 = T γ11 = Γ δ1 , where δ = logg(T1). Then, compute a

collision-resistant hash v = CMhash(hk, (ψ,L, pk), shash) ∈ {0, 1}`, where

shash
R← Rhash. Then, parse v as v[1] . . . v[`] ∈ {0, 1}` and assemble the vec-

tor ~hv = ~h0 �
⊙`

i=1
~h
v[i]
i . Using (~g1, ~g2,~hv) as a Groth-Sahai CRS, generate

a commitment ~CΓ−1
to Γ−1 = g1/γ1 and a NIZK proof that Γ−1 satisfies

e(Tδ,1, Γ−1) = e(T1, g). To this end, generate a commitment ~CXτ to the aux-
iliary variable Xτ = g and non-interactive proofs πτ,1, πτ,2 for the equations

e(Tδ,1, Γ−1) = e(T1,Xτ ) , e(g,Xτ ) = e(g, g) . (2)

The claim/disclaimer is τ =
(
Tδ,1, ~CΓ−1

, ~CXτ , πτ,1, πτ,2, shash
)
∈ G14.

CLAIM-VERIFY(pkGM, pkOA, ψ, L, pk, τ) : Given pk = (X1, X2, Γ1, Γ2) and the
ciphertext ψ = VK‖(T1, T2, T3, T4)‖ψLY‖ψK1

‖ψK2
‖σ, parse τ as above. Re-

turn 1 if and only if e(Tδ,1, Γ2) = e(T2, T3) and e(T1, Γ1) = e(g, Tδ,1) and

πτ,1, πτ,2 are valid proofs for (2) w.r.t. the Groth-Sahai CRS (~g1, ~g2,~hv),

where ~hv = ~h0 �
⊙`

i=1
~h
v[i]
i and v = CMhash(hk, (ψ,L, pk), shash) ∈ {0, 1}`.

DISCLAIM-VERIFY(pkGM, pkOA, ψ, L, pk, τ) : Parse pk, ψ and τ as previously.
Return 1 if and only if e(Tδ,1, Γ2) 6= e(T2, T3), e(T1, Γ1) = e(g, Tδ,1) and

πτ,1, πτ,2 are valid proofs for (2) and the Groth-Sahai CRS (~g1, ~g2,~hv), where
~hv = ~h0 �

⊙`
i=1

~h
v[i]
i and v = CMhash(hk, (ψ,L, pk), shash) ∈ {0, 1}`.

The length of ciphertexts is about 2.18 kB using symmetric pairings with a
512-bit representation for each group element (at the 128-bit security level). Our
proofs only require 9.38 kB (against roughly 32 kB for the same security in [9]).
More detailed comparisons with [19,9] are given in the full version of the paper.

The correctness of the scheme stems from that of Groth-Sahai proofs. From a
security point of view, we prove the security properties under the q-SFP, D3DH
and DLIN assumptions and also require the one-time signatures to be strongly
unforgeable. All proofs are given in the full version of the paper.
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