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The Distributions of Individual Bits in the Output
of Multiplicative Operations

Michael Tunstall · Marc Joye

Abstract A difference-of-means test applied to acquisitions of the instanta-
neous power consumption has been shown to be a suitable means of distin-
guishing a multiplication from a squaring operation over the integers. This has
been attributed to the difference in expected Hamming weight of the output
of these operations but few details are present in the literature. In this paper
we define how this difference occurs and show that, somewhat surprisingly, a
difference can, for some moduli, still be observed after a modular reduction.
Moreover, we show that this difference leads to a practical attack under rea-
sonable assumptions where a modulus is blinded. The presented attack goes
beyond the cryptographic primitive and applies to concrete provably secure
implementations, including RSA-PSS for signature generation or RSA-OAEP
for encryption that uses side-channel countermeasures.

Keywords Side-Channel Analysis · Exponentiation Algorithms

1 Introduction

Side-channel analysis was first introduced to the cryptographic community
by Kocher [17] who noted that a private key could be extracted from imple-
mentations of RSA [25] by observing the time required to compute a modu-
lar exponentiation. Further work by Kocher et al. [18] demonstrated that a
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secret key could be extracted by a statistical treatment of numerous power
consumption traces acquired during the computation of a block cipher. The
initial attack used a difference-of-means test to determine key values, but al-
ternatives such a Pearson’s correlation coefficient [6], mutual information [13]
or the Kolomogorov-Smirnov test [29] have since been proposed.

It is widely accepted that the instantaneous power consumption of a micro-
processor typically corresponds to the Hamming weight or Hamming distance
model [19]. That is, the instantaneous power consumption is typically propor-
tional to the Hamming weight of the data being manipulated at a given point
in time, or proportional to the Hamming weight of the data being manipu-
lated at a given point in time XORed with some previous state. The Hamming
weight model is typically assumed to correspond to bus lines or memory lo-
cations that are set to zero before being overwritten, whereas the Hamming
distance model is typically assumed to correspond to transistors or RAM cells,
for example, changing state. However, not everything is always visible since
some operations, within an ALU for example, may not correspond to these
models and hence cannot easily be exploited by an adversary.

The difference-of-means test has been shown to be sufficient to distin-
guish a multiplication from a squaring operation by comparing the instanta-
neous power consumption during two group operations. Akishita and Takagi [1]
demonstrated that a mean power consumption trace of an FPGA implemen-
tation of a multiplication and squaring operation differs. A similar result has
been presented by Amiel et al. [2], who observed that the expected Hamming
weight of the result of a multiplication is different to the result of a squar-
ing operation. This difference in expected Hamming weight was shown to be
visible in acquisitions of the instantaneous power consumption taken while an
ARM7 microprocessor was computing a multiplication or a squaring operation.
Clavier et al. [8] proposed an improvement where the information from all the
points where a difference could be observed were combined. Simulations sug-
gested that this would allow an attacker to derive the same information from a
single trace. A similar approach was taken Hanley et al. [14] who showed that
this difference could be detected using a small number of traces by building
suitable templates [7]. However, building these templates is somewhat prob-
lematic and a discussion of this topic is beyond the scope we wish to cover
here.

The attacks described in the literature [1,2,8,14] do not require any knowl-
edge of the input to an exponentiation, other than that it is random and uni-
formly distributed. These attacks are therefore applicable to cases where the
input has been padded and/or blinded. However, no previous work provides
much detail on why the difference in expected Hamming weight occurs.

In this paper we describe how the expected difference in Hamming weight
is produced and show that a, much reduced, expected difference can still be
present after a modular reduction. This difference is also shown to be present
in the result of a Montgomery multiplication [20]. Furthermore, we show that
the number of acquisitions required to conduct an attack after a modular
reduction is reasonable.
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We have structured our work as follows. We begin by defining an attack
model that we will refer to in the rest of the paper. We continue in Section 3
by defining the difference in the expected Hamming weight for multiplications
and squaring operations in Z and the expected number of traces required
to observe this difference. We then show how this can be extended to Zm in
Section 4 and how this affects the required number of acquisitions. We describe
some of the applications of such attacks in Section 5. We conclude in Section 6.

2 Attack Model

In this paper we consider an adversary who is able to measure the power con-
sumption of a microprocessor while it is computing a modular exponentiation.
The adversary wishes to determine the exponent and the ability to distinguish
a multiplication from a squaring operation will allow individual bits of the ex-
ponent to be determined. We refer the interested reader to Kocher et al. [18]
for a more detailed description. We assume that the instance of the modular
exponentiation uses the binary exponentiation algorithm implemented such
that an adversary cannot distinguish a modular multiplication and a modular
squaring operation by inspecting a single trace.1

An adversary can take as many acquisitions as deemed necessary to conduct
an attack. The input to the modular exponentiation is assumed to be random
and unknown to an adversary. For example, using an implementation of RSA-
PSS [5] or RSA-OAEP [4]. The adversary is able to take each trace acquired
and divide it up into sub-traces, where each sub-trace corresponds to one group
operation.

We consider two different side channels that could be available to an adversary:

1. The power consumption measured immediately after a multiplication is
proportional to the Hamming weight of the result. For convenience, we
assume that an adversary can directly determine the Hamming weight.

2. The power consumption measured immediately after a modular multipli-
cation is proportional to the Hamming weight of the result. Given that
the multiplication of large numbers will typically occur in dedicated hard-
ware the Hamming weight of the multiplication may not be visible. Again,
for convenience, we assume that an adversary can directly determine the
Hamming weight.

The majority of modular multiplication algorithms used to compute the prod-
uct of large numbers consist of interleaved multiplications and modular reduc-
tions. To achieve an efficient implementation the interleaved multiplications
are typically with one computer word whose bit length is dictated by the
architecture of a given microprocessor. We shall consider 32- and 64-bit mi-
croprocessors where an adversary can measure the power consumption at the
end of each modular reduction step. Clavier et al. [9] have shown that one can

1 Otherwise a private exponent could be determined by simple power analysis [18].
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extract small power consumption traces corresponding to individual multipli-
cations from a power consumption trace taken during the computation of a
multi-precision multiplication, thus allowing an adversary to choose multiple
points where the Hamming weight at each step in a multiplication, resp. mod-
ular multiplication, can be determined. We will consider these cases alongside
the two models given above.

3 Defining the Distributions in Z

We shall define an approximation to the distribution of the individual bits of
the result of a multiplication and a squaring operation, corresponding to the
analysis of the first type of side-channel leakage defined in Section 2.

3.1 Multiplication in Z

In this section we shall define a function that returns the probability that the
i-th most significant bit of the result of a multiplication is set to one for random
multiplicands. Given r-bit multiplicands, we determine a precise result for the
r least significant bits of the output by starting with a strong assumption and
then show that the assumption is irrelevant. For the r most significant bits we
use a more heuristic approach.

We consider a, b, c ∈ Z≥0 where c = a b. For convenience we shall assume
that a and b have the same bit length r. Given a and b the simplest method
to compute c is the grid method (a.k.a. schoolboy method) where we only
consider digits in base 2 rather than base 10. Hence, for r-bit values of a and
b we consider a repeated addition of shifted values of one of a and b. This is
defined in Algorithm 1.

Algorithm 1: Grid Multiplication
Input: a, b ∈ Z≥0 of bit length r
Output: c = a b ∈ Z≥0

1 z = 0 ;

2 for i = 0 to r − 1 do
3 if bb/2ic ∧ 1 = 1 then
4 z = z + 2i a ;
5 end

6 end

7 return z
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This gives a series of additions of the form

X X X X X X X X X X X X X X X X X X X +

X X X X X X X X X X X X X X X X X X X +

X X X X X X X X X X X X X X X X X X X +

X X X X X X X X X X X X X X X X X X X +

...

where either 6 ∃X or X ∈ {0, 1}. In terms of Algorithm 1, a line will exist
if a certain bit of b is set to 1, otherwise the line forms a shifted bitwise
representation of a. If we consider one column, the corresponding bit in the
result c will be set to 1 if the sum of the column (and any carry bits) is odd.

We define Ys as the sum of the bits of the s-th column, and Ws as the
number of lines present in the addition described above, i.e. the Hamming
weight of the s least significant bits of b. Then

Pr[Ys = y |Ws = w] =

(
w

y

)
1

2w
and Pr(Ws = w) =

(
s

w

)
1

2s
.

There will be a possible combination for Ys, for any Ws ≥ Ys. Hence:

Pr[Ys = y] =
s∑
i=y

Pr[Ys = y |Ws = i] Pr[Ws = i] .

We define Zs as the sum of the s-th column modulo 2 giving

Pr[Zs = 1] =

bs/2c∑
i=0

bs/2c∑
j=i

Pr[Ys = 2 j + 1 |Ws = 2 i+ 1] Pr[Ws = 2 i+ 1] .

The sum of the bits of a given column may exceed 1, so we have to consider
the carry produced when performing the same operation on the next column.
That is, if we define Ds as the carry produced from the s-th column then

Pr[Ds = d] = Pr[Ys = 2 d] + Pr[Ys = 2 d+ 1] ,

and

Pr[Ys = y] =

y∑
i=0

Pr[Ds−1 = y − i]
s∑
j=i

Pr[Ys = i |Ws = j] Pr[Ws = j] .

Let κ =
∑bs/2c
i=0 Pr[Ds−1 = 2 i], then

Pr[Zs = 1] = κ

bs/2c∑
i=0

s∑
j=2 i+1

Pr[Ys = 2 i+ 1 |Ws = j] Pr[Ws = j]

+ (1− κ)

bs/2c∑
i=0

s∑
j=2 i

Pr[Ys = 2 i |Ws = j] Pr[Ws = j] .
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From which it can easily be shown that

Pr[Zs = 1] =
1

2
− 1

2s+1

(see Appendix A). Given that { 1
2s+1 } is a basic null sequence, Pr[Zs = 1] −→ 1

2
as s −→∞ under the assumption that s < r.

Computing the remaining probabilities Pr[Zs = 1] for r < s ≤ 2 r cannot
be reduced to such a simple expression since the impact of the carry cannot
be eliminated in the same way. Results can be achieved by observing that the
probability Pr[Zs = 1] for the most significant bit of the result of a multi-
plication converges to a fixed value as r increases. Likewise, the second most
significant bit converges to a fixed value as r increases, etc.

Lemma 1 The probability that the n-th most significant bit of the result of
a multiplication is set to one, given random multiplicands, will converge on a
certain value as the bit lengths of the multiplicands tends to infinity.

Proof We consider n-bit multiplicands and define the i-th most significant bit
of the multiplicand used to make the row in the grid (as defined above) to be
Xi, and Ri to be the i-th most significant bit of the output of a multiplication.
We define ci to be the sum of all the carry bits up to the (i − 1)-th most
significant bit of the output. Then the effect of a given column from the grid
on the most significant bit of the output will be at most:

X1 + c1
2

,

∑2
i=1Xi + c2

22
,

∑3
i=1Xi + c3

23
, . . . ,

∑j
i=1Xi + cj

2j
, . . .

or, given cj ≤ j, equivalently,

2

2
,

4

22
,

6 + c3
23

, . . . ,
2 j

2j
, . . .

Given that the dominant term will form the basic null sequence { 1
2j }, then∑j

i=1 Xi+cj
2j −→ 0 as j −→∞. Hence, the probability that the most significant

bit of the output is set to one converges in probability as a function of j as
j −→ ∞. It is straightforward to modify this argument to most-significant
r bits of the output. Hence, for random r-bit multiplicands the probability
that individual bits in the most-significant r bits of the output are set to one
converges. ut

For example, the probabilities of the most significant bit being set to one, as the
bit length increases, are given below to four significant figures for multiplicands
of one to thirteen bits:

{0, 0.0625,0.09375, 0.125, 0.1377, 0.1460, 0.1491,

0.1513, 0.1524, 0.1529, 0.1532, 0.1533, 0.1533, 0.1533}

We can see that for multiplicands of bit length greater than 11 the probability
that the most significant bit is set to one is constant to four significant figures.
While somewhat imprecise, this method is adequate for our requirements.
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Hence, we define the set β as a given number of probabilities for the |β|most
significant bits of the result of a multiplication determined using the method
described above. We define hi as the i-th element of β, where i corresponds to
the i-th most significant bit of the result of a multiplication. Then

fm : Z>0
2 −→ Q+

≤1 : fm(s, r) 7−→


1
2 −

1
2s+1 if s ≤ r

1
2 if r < s ≤ 2 r − |β|
h2 r−s+1 if 2 r − |β| < s ≤ 2 r

0 if s > 2 r

defines a function fm for computing Pr[Zs = 1] for 1 ≤ s ≤ 2 r.

3.2 Squaring Operation in Z

As above, we define Ys as the sum of the bits of the s-th column, and Ws as
the number of lines present in the addition described above, i.e. the Hamming
weight of the s least significant bits of b. Again, we consider that the result of
a series of additions of the form

X X X X X X X X X X X X X X X X X X X +

X X X X X X X X X X X X X X X X X X X +

X X X X X X X X X X X X X X X X X X X +

X X X X X X X X X X X X X X X X X X X +

...

where either 6 ∃X or X ∈ {0, 1}. If we consider one column of the grid as n bits

X1, X2, . . . , Xn

where either 6 ∃Xi or Xi ∈ {0, 1} for all i ∈ {1, . . . , n}, then there will be
relationships between elements of the vector. Generally, we can state

(Xi+1 = 1) ⇐⇒ (Xn−i = 1)

for all i ∈ {0, . . . , bn/2c − 1}. If n is odd then we can also state that

∃Xdn/2e ⇐⇒ (Xdn/2e = 1) .

This is a widely known result (see, for example, [24]). Then

Pr[Ws = 2w] =

(
bs/2c
w

)
1

2bs/2c
,

and if s is odd Pr[Ws = s] = 1
2ds/2e .

Without loss of generality we shall assume that s is even, since if s is even
Pr[Ws = s] = Pr[Ws−1 = s− 1]. Hence,

Pr[Ys = 2 y |Ws = 2w] =

(
w

y

)
1

2w
.
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Again, we define Ds as the carry produced from the s-th column and let

κ =
∑bs/2c
i=0 Pr[Ds−1 = 2 i].

We note that the result of the sum of a given column will be even, and the
result will impact the next column, then it can easily be shown that:

Pr[Zs = 1] = κ

b(s−1)/2c∑
j=0

b(s−1)/2c∑
k=2 j+1

Pr[Ys = 2 j + 1 |Ws = k] Pr[Ws = k]

+ (1− κ)

b(s−1)/2c∑
j=0

b(s−1)/2c∑
k=2 j

Pr[Ys = 2 j |Ws = k] Pr[Ws = k]

=
1

2
− 1

2b(s−1)/2c+1

(see Appendix B). As previously, { 1
2b(s−1)/2c+1 } is a basic null sequence and

hence Pr[Zs = 1] −→ 1
2 as s −→ ∞ under the assumption that s < r

2 . The
probability defined above is valid for 1 < s ≤ r. However we note that it is
incorrect for s = 1 since Pr[Z1 = 1] = 1

2 .

Given Lemma 1 we state the following corollary:

Corollary 1 The probability that the n-th most significant bit of the result of
a squaring operation is set to one, given random multiplicands, will converge
on a certain value as the bit lengths of the multiplicands tends to infinity.

As previously, we define the set γ as a given number of probabilities for the
|γ| most significant bits of the result of a squaring operation determined using
the method described above. We define gi as the i-th element of γ, where i
corresponds to the i-th most significant bit of the result of a squaring operation.
Then

fq : Z>0
2 −→ Q+

≤1 : fq(s, r) 7−→



1
2 if s = 1
1
2 −

1
2b(s−1)/2c+1 if 1 < s ≤ r

1
2 if r < s ≤ 2 r − |γ|
g2 r−s+1 if 2 r − |γ| < s ≤ 2 r

0 if s > 2 r

defines a function fq for computing Pr[Zs = 1] for 1 ≤ s ≤ 2 r.

3.3 Using the Difference to Distinguish a Multiplication from a Squaring
Operation

As defined in Section 2, we assume that the power consumption of a device
is proportional to the Hamming weight of the values being manipulated at a
given point in time. The distributions defined for a multiplication and a squar-
ing operation can be used to describe an attack by computing a difference of
means as described by Kocher et al. [18]. In the following we determine the
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minimum sample size required to conduct such an attack using a straightfor-
ward variation of the method described by Mangard et al. [19].

Given a series of probabilities that the s-th bit is equal to 1, i.e. Pr[Zs = 1]
using the notation given above. The probabilities of individual bits being set
to one, for a given operation on r-bit operands, is an instance of the Poisson
binomial distribution. We define h as the Hamming weight of the output, then
the expected Hamming weight E(h) and the variance var(h) are defined as

E(h) =

2 r∑
i=1

Pr(Zi = 1) and var(h) =

2 r∑
i=1

(1− Pr[Zi = 1]) Pr[Zi = 1] .

The Poisson binomial distribution is non-normal. However, the majority of
probabilities will be equal to 1

2 (i.e. the distribution will be close to a standard
binomial) and, given the effect of the Central Limit Theorem, it is reasonable
to assume that the Poisson binomial distribution is normal in this instance.

We define µq and σ2
q to be the expected Hamming weight and variance

of the output of a squaring operation, and µm and σ2
m to be the expected

Hamming weight and variance of the output of a multiplication. Under the
assumption that µq = µm then the difference

µ̄q − µ̄m√
σ̄2
q

n +
σ̄2
m

n

∼ N(0, 1)

where µ̄q and µ̄m are the sample means, from n samples, for the Hamming
weight of a multiplication and squaring operations respectively, with sample
variances σ̄2

q and σ̄2
m. We also use the asymptotic result that Student’s t-

distribution is equivalent to the standard normal distribution.
We wish to show that the null hypothesis µq = µm is incorrect to demon-

strate that two sample means are not the same (and hence the difference
implies a multiplication has been compared with a squaring operation). Let
−Qα/2 and Qα/2 be the value on the cumulative density function of the stan-
dard normal distribution, where the cumulative probability is equal to α/2
and 1− α/2 respectively. Then for a chosen value of α one would expect that
if µq = µm then

Q1−α/2 ≥

∣∣∣∣∣∣ µq − µm√
σ2
q

n +
σ2
m

n

∣∣∣∣∣∣ , and hence n =
σ2
q + σ2

m

(µq − µm)
2 Q1−α/2

2

will be the minimum sample size to provide evidence against the null hypoth-
esis that µq 6= µm if it is false.

If we set α = 0.001 then the probability of incorrectly determining that a
given difference is consistent with the null hypothesis is 1/1000, and similar for
incorrectly determining that a given difference is not consistent with the null
hypothesis. If we apply this to the distributions defined for the multiplication
and squaring operation the number of samples required is shown in Table 1.
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Table 1 The required number of traces to distinguish a multiplication and a squaring
operation in Z where α = 0.001.

Bit Length Operation E(h) var(h) Acquisitions Required

512
Squaring 509.81 255.39

5.53× 103

Multiplication 510.81 255.73

1024
Squaring 1021.81 511.39

1.11× 104

Multiplication 1022.81 511.73

2048
Squaring 2045.81 1023.39

2.22× 104

Multiplication 2046.81 1023.73

The model given in Section 2 assumes that an adversary is able to deter-
mine the Hamming weight at a given point in time from a power consumption
trace. In practice this information will be noisy where the noise level depends
on the microprocessor under attack. The effects of noise on an attack based
on a difference-of-means is covered in detail by Mangard et al. [19] and will
not be discussed here.

4 Defining the Distribution in Zm

In this section we define an approximation to the distribution of the individual
bits of the result of a modular multiplication and a modular squaring opera-
tion, corresponding to the analysis of the second type of side channel leakage
defined in Section 2.

4.1 Modular Multiplication

In the previous section we discuss the distribution for operations in Z. We
consider a, b, c ∈ Zm where c = a b and m ∈ Z>0. We consider that the result
is reduced modulo m of bit length r. Then the result

c ≡ a b (mod m)

can be computed using
c− km = a b mod m

for some k ∈ Zm. For convenience, we will assume that m is a random variable
of a fixed bit length that is independent to a and b. We note that k is not
independent to a and b but the bitwise representation of km will be random
assuming that the longest run of zeros or ones in m is less than the longest
run of zeros or ones in k [26].

We have defined the distribution of the individual bits of c in the previous
section, and km will have the same distribution as the result of a multiplica-
tion. The effect of this subtraction can be readily computed. We define Zt,i as
the probability the i-th bit of the targeted operation (either a multiplication
or squaring operation) is equal to 1 and Zm,i as the probability the i-th bit of
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the result of a multiplication is equal to 1. Furthermore, we define bi to the be
value of the borrow at the i-th bit and Zx,i the probability the i-th bit of the
result is equal to 1. Then

Pr[Zx,i =1] = Pr[bi = 0] ((Pr[Zt,i = 0] Pr[Zm,i = 1]) (Pr[Zt,i = 1] Pr[Zm,i = 0]))

+ Pr[bi = 1] ((Pr[Zt,i = 0] Pr[Zm,i = 0]) + (Pr[Zt,i = 1] Pr[Zm,i = 1]))

and

Pr[bi+1 = 1] = Pr[bi = 0] (Pr[Zt,i = 1] Pr[Zm,i = 1])

+ Pr[bi = 1] (1− (Pr[Zt,i = 0] Pr[Zm,i = 0])) ,

which can be used to determine the number of traces required to distinguish a
multiplication from a squaring operation. A described in Section 2, the number
of traces required to conduct an attack can be reduced where single-precision
multiplications and squaring operations can be compared in a multi-precision
multiplication.

If we assume that an adversary is analysing an implementation with in-
terleaved multiplications and modular reductions, as described in Section 2,
the expected Hamming weight can be computed as described above where one
operand has a limited bit length. Since the probability of a given bit being set
to one rapidly converges to 1

2 , the resulting expectation and variance are the
same at each stage of the operation. This remains true at each stage of the
multiplication since the first operation will be a multiplication or a squaring
operation where the first x bits are potentially equal. The second multiplica-
tion will correspond to a multiplication or a squaring operation where the first
2x bits are potentially equal, and this will continue until a full multi-precision
multiplication has been computed. A number of samples can therefore be taken
from each acquisition, where the word-size of a given microprocessor will dic-
tate how many points are of interest.

In Table 2 we summarise the required number of traces required to dis-
tinguish a multiplication from a squaring operation. We give results based
on the word size of the processor considered, which are: large (i.e. only one
observation will be possible), 32-bit and 64-bit.

Table 2 The required number of traces to distinguish a multiplication from a squaring
operation in Zn where α = 0.001.

Bit
Operation E(h) var(h)

Acquisitions Required
Length Large 32-bit 64-bit

512
Squaring 255.91 127.99

9.20× 105 5.75× 104 1.15× 105

Multiplication 255.85 127.98

1024
Squaring 511.91 255.99

1.84× 106 5.75× 104 1.15× 105

Multiplication 511.85 255.98

2048
Squaring 1023.91 511.99

3.68× 106 5.75× 104 1.15× 105

Multiplication 1023.85 511.98
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The above analysis assumes that the modulus is different for each compu-
tation of a multiplication or a squaring operation, i.e. Pr[Zm,i = 1] = 1

2 for all
1 ≤ i ≤ log2m . The results based on this analysis are therefore the expected
difference for a fixed modulus, or the expected observable difference assuming
that the modulus is randomised by adding some random multiple of the mod-
ulus before computing an exponentiation. For a fixed modulus the difference
may exist but the expected difference will be different in each instance, and
may not be statistically significant. Moreover, in some cases a modular squar-
ing operation will produce results with a higher expected Hamming weight
than a modular multiplication. This means that it is essential that one uses a
two-tailed test, as described in Section 3.3, when evaluating the significance of
an observed difference. The results given in Table 2, and the results described
below, are therefore only indicative and will be different for an arbitrary fixed
modulus.

Simulating an attack, one cannot produce a statistically significant dif-
ference with a randomly generated RSA modulus (such as used for RSA-
PSS [5] and RSA-OAEP [4]) or for a prime modulus defined by NIST for
use in ECDSA [22]. However, a difference can be readily observed where a
modulus is blinded [11], i.e. where one typically multiplies the modulus by
a random value to provide a redundant representation for intermediate val-
ues. The reader is referred to Smart et al. [26] for a thorough discussion of
randomised representations. We also note that if m is a power of 2, then the
resulting difference will correspond to the difference before modular reduction,
allowing an attack to be conducted with a similar number of acquisitions to
that required to distinguish a multiplication and a squaring operation in Z.

The number of traces required to conduct the attack where α = 0.001 is
quite high, and will be impractical in some circumstances. One could, therefore,
increase the chosen value of α so that the error rate increases. An adversary
would then be obliged to solve a discrete logarithm problem. We summarise
the results for a variety of values of α in Table 3 using Stinson’s algorithm for
exponents of low Hamming weights [27], where for an exponent of bit length η
with an unknown t-bit error the exponent can be derived with time complexity

O
(
η
∑dt/2e
n=0

(
η/2
n

))
, as described in Appendix C.

Remark 1 At first sight our results may seem to be wrong. One might (in-
correctly) conclude that seeing a difference in the distributions of squaring
operations and multiplications modulo m contradicts the quadratic residuos-
ity (QR) assumption. This would be because of the following: Let N be an RSA
modulus; i.e., N = p q is the product of two large primes. Loosely speaking,
the QR assumption conjectures that squares in Z∗N cannot be distinguished
from pseudo-squares—that is, non-squares in Z∗N with Jacobi symbol 1. This
section states that the expected Hamming weight of squared elements is dif-
ferent to the product of two distinct elements. For two elements a, b ∈ Z∗N ,
a 6= b, we note that if w := a/b mod N is a square then the multiplication
a b mod N can, equivalently, be obtained as (bw)b mod N or as x2 mod N
where x = b z mod N with z a square-root of w. Hence the seemingly possible
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Table 3 The required number of traces to distinguish a multiplication from a squaring
operation in Zm for different values of α.

Bit
α

Acquisitions Required Expected Time
Length Large 32-bit 64-bit Error (bits) Complexity

512
0.001 9.20× 105 5.75× 104 1.15× 105 1 217

0.005 6.69× 105 4.18× 104 8.37× 104 3 224

0.01 5.64× 105 3.52× 104 7.05× 104 6 230

1024
0.001 1.84× 106 5.75× 104 1.15× 105 2 219

0.005 1.34× 106 4.18× 104 8.37× 104 6 234

0.01 1.13× 106 3.52× 104 7.05× 104 11 254

2048
0.001 3.68× 106 5.75× 104 1.15× 105 3 230

0.005 2.68× 106 4.18× 104 8.37× 104 11 261

0.01 2.26× 106 3.52× 104 7.05× 104 21 294

contradiction. However, our results were obtained for the whole group Z∗N , and
not for the set of elements with Jacobi symbol 1. Our results do not hold in
this case. We also note that the QR assumption does not hold in the whole
group Z∗N : using the Jacobi symbol as a distinguisher, the advantage is of 1/4.

4.2 Montgomery Multiplication

Montgomery multiplication functions differently to most modular multiplica-
tion algorithms. Again, we consider a, b, c ∈ Zm where c = a b and m ∈ Z>0

(m odd). The Montgomery multiplication will result in

c ≡ a b 2−δ (mod m) ,

where we define δ = dlog2me to be the bit length of m. Equivalently, one can
compute c = a b and one then adds a multiple of m, e.g. km for some k ∈ Z>0,
such that the least significant δ bits of the result are set to zero. That is:

a b+ km

2δ
= a b 2−δ mod m

As for the strategy described in Section 4.1, if we know the distribution of the
most significant bits of a multiplication and squaring operations the resulting
distribution can be determined.

The result of the Montgomery multiplication algorithm, and the interleaved
reduction steps, will be between 0 and 2m which leads to a slightly higher
value for E(h). The expected number of traces that one requires to conduct
an attack is given in Table 4, and the expected number of required traces
for different values of α is given in Table 5. It is interesting to note that the
required number of traces is approximately half that required for a standard
modular multiplication.

The values given in Table 4 and Table 5 are only indicative and will be
different for an arbitrary fixed modulus. As with the results described in Sec-
tion 4.1, the results based on this analysis are therefore the expected difference
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Table 4 The required number of traces to distinguish a multiplication from a squaring
operation in Zn using Montgomery multiplication and α = 0.001.

Bit
Operation E(h) var(h)

Acquisitions Required
Length Full 32-bit 64-bit

512
Squaring 255.97 128.11

4.13× 105 2.58× 104 5.16× 104

Multiplication 255.89 128.09

1024
Squaring 511.97 256.11

8.26× 105 2.58× 104 5.16× 104

Multiplication 511.89 256.09

2048
Squaring 1023.97 512.11

1.65× 106 2.58× 104 5.16× 104

Multiplication 1023.89 512.09

Table 5 The required number of traces to distinguish a multiplication and a squaring
operation in Zn using Montgomery multiplication for different values of α.

Bit
α

Acquisitions Required Expected Time
Length Full 32-bit 64-bit Error (bits) Complexity

512
0.001 4.13× 105 2.58× 104 5.16× 104 1 217

0.005 3.01× 105 1.88× 104 3.76× 104 3 224

0.01 2.53× 105 1.58× 104 3.16× 104 6 230

1024
0.001 8.26× 105 2.58× 104 5.16× 104 2 219

0.005 0.60× 106 1.88× 104 3.76× 104 6 234

0.01 0.51× 106 1.58× 104 3.16× 104 11 254

2048
0.001 1.65× 106 2.58× 104 5.16× 104 3 230

0.005 1.20× 106 1.88× 104 3.76× 104 11 261

0.01 1.01× 106 1.58× 104 3.16× 104 21 294

for a fixed modulus, or the expected observable difference assuming that the
modulus is randomised by adding some random multiple of the modulus before
computing an exponentiation.

5 Applications of the Attack

In the attack described above we assume that an adversary is seeking to deter-
mine a private exponent used in the binary exponentiation algorithm. Further-
more, we assume that the input to the exponentiation algorithm is random and
unknown to an adversary. Indeed, to satisfy the requirement that the output of
group operations are distributed as defined above, the input has to be at least
somewhat random. The attack is therefore applicable to implementations of
RSA-PSS [5] and RSA-OAEP [4] where an adversary cannot derive the input
to an exponentiation algorithm. However, our analysis suggests that, unless
simulated results suggest otherwise, an attack requires that an implementation
uses a blinded modulus [11].

We recall that the attacks described in the literature [1,2,8,14] function
by distinguishing a multiplication from a squaring operation over the integers.
Clavier et al. [10] describe an algorithm that only uses squaring operations to
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compute a multiplication, based on the observation that

x y =
(x+ y)

2 − x2 − y2

2

and hence

x y =

(
x+ y

2

)2

−
(
x− y

2

)2

.

Clavier et al. show that using this countermeasure is a practical solution given
that the time required to compute a squaring operation can be 4

5 that of a
multiplication. We can note that the result of any operation equivalent to x y
will still have the distribution described in Section 4. The described analy-
sis would therefore apply, but an adversary would only have one point that
could be analysed, rather than a point after each multiplication of interleaved
multiplication and modular reduction steps.

Countermeasures to the attacks described in the analysis given above can
be readily found in the literature. The simplest approach would be to use a
regular exponentiation algorithm so that the required information is not avail-
able to an adversary. Some examples of such algorithms for constrained devices
include the Montgomery powering ladder [16,21] and Joye’s highly regular ex-
ponentiation algorithms [15]. One could also use a redundant representation
when computing a squaring operation by using two different representations
for the same value [11,12,26]. The probability distributions for multiplication
and squaring operations would then be the same.

Another approach would be to randomise the structure of an algorithm
such that the information is spread over numerous points. This could be done
by changing the exponentiation algorithm as, for example, proposed by Oswald
and Aigner [23]. Alternatively, one could compute a multi-precision multipli-
cation in a random order as described by Bauer et al. [3]. Typically, one would
say that these countermeasures only require that an attacker take more acqui-
sitions to compensate (see Mangard et al. [19] for more details). However, given
the large number of acquisitions that are required, these countermeasures may
be sufficient.

6 Conclusion

A difference-of-means test applied to acquisitions of the instantaneous power
consumption has been shown to be a suitable means of distinguishing a multi-
plication from a squaring operation [1,2,8,14]. These attacks are based on the
difference in the expected Hamming weight of the result of a multiplication
and a squaring operation. While these attacks rely on the exponent remaining
unchanged, and will not apply to all moduli, the input to the exponentiation
can be unknown, although it is necessary that the input is different in each ex-
ecution of the exponentiation. These attacks are therefore applicable to cases
where the input has been padded and/or blinded.
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However, the literature contains no details on why this difference occurs
which we address in this paper. We describe how the expected difference in
Hamming weight occurs and show that a, much reduced, expected difference
is still present after a modular reduction. This difference is also shown to be
present in the result of a Montgomery multiplication. We define the expected
minimum number of acquisitions required to conduct an attack before and
after a modular reduction, which are practical in some cases. If an adver-
sary is able to extract individual multiplications, as described by Clavier et
al. [9], the number of acquisitions is low enough to be practical in many of the
cases considered. In each case we define the time complexity of analysing a
hypothesis to determine the exponent used showing the majority of the cases
considered are practical. However, we do not consider the impact of acquisition
noise on the number of acquisitions required to conduct an attack. This will
be an important consideration in any implementation of these attacks since it
will increase the number of acquisitions that are required. A discussion of this
topic is beyond the scope of this paper and the interested reader is referred to
Mangard et al. [19].

For a fixed and known modulus one can estimate the difference in the
expected Hamming weight of the result of a multiplication and a squaring
operation using the Monte Carlo method. One can then determine whether a
statistically significant difference could be observed given a reasonable number
of traces. Simulating an attack, it appears that one cannot produce a statisti-
cally significant difference with a randomly generated RSA modulus (such as
used for RSA-PSS [5] and RSA-OAEP [4]) or for a prime modulus defined by
NIST for use in ECDSA [22].
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A Pr[Zs = 1] for Multiplication in Z

Following the notation we define in Section 3.1. We define Ys as the sum of the bits of the
s-th column, and Ws as the number of lines present in the addition described above, i.e. the
Hamming weight of the s least significant bits of the result of a multiplication.

Pr[Ys = y |Ws = w] =
(w
y

) 1

2w
and Pr(Ws = w) =

( s
w

) 1

2s
.

We also define Ds−1 as the carry produced from the (s− 1)-th column then

Pr[Ds−1 = d] = Pr[Ys−1 = 2 d] + Pr[Ys−1 = 2 d+ 1] ,

and

Pr[Ys = y] =

y∑
i=0

Pr[Ds−1 = y − i]
s∑
j=i

Pr[Ys = i |Ws = j] Pr[Ws = j] .

Let κ =
∑bs/2c
i=0 Pr[Ds−1 = 2 i], then

Pr[Zs = 1] = κ

bs/2c∑
j=0

s∑
k=2 j+1

Pr[Ys = 2 j + 1 |Ws = k] Pr[Ws = k]

+ (1− κ)

bs/2c∑
j=0

s∑
k=2 j

Pr[Ys = 2 j |Ws = k] Pr[Ws = k]

= κ

bs/2c∑
j=0

s∑
k=2 j+1

( k

2 j + 1

) 1

2k

(s
k

) 1

2s
+ (1− κ)

bs/2c∑
j=0

s∑
k=2 j

( k
2 j

) 1

2k

(s
k

) 1

2s

= (κ+ (1− κ))

bs/2c∑
j=0

s∑
k=2 j+1

( k

2 j + 1

) 1

2k

(s
k

) 1

2s
(by Lemma 2)

=

bs/2c∑
j=0

s∑
k=2 j+1

( k

2 j + 1

) 1

2k

(s
k

) 1

2s

=

bs/2c∑
j=0

s∑
k=2 j+1

Pr[Ys = 2 j + 1 |Ws = k] Pr[Ws = k] .

Hence, one can compute Pr[Zs = 1] without needing to compute the carry at each step.

Lemma 2 Given the binomial numbers
(n
r

)
for r ∈ {0, . . . , n} for some n ∈ Z>0, then∑

r odd

(n
r

)
=
∑
r even

(n
r

)
.

Proof This follows from the binomial formula by noting that

0 = (1− 1)n =
∑

0≤r≤n

(n
r

)
1n−r(−1)r =

∑
0≤r≤n
r even

(n
r

)
−

∑
0≤r≤n
r odd

(n
r

)
.

ut

Furthermore, given that

Pr[Zs = 1] =

bs/2c∑
j=0

s∑
k=2 j+1

( k

2 j + 1

) 1

2k

(s
k

) 1

2s
,
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for any k, ∑
1≤j≤k,
j odd

(k
j

) 1

2k
=

1

2
(by Lemma 1).

Hence,

Pr[Zs = 1] =

s∑
k=1

1

2

(s
k

) 1

2s
=

1

2
−

1

2

(s
0

) 1

2s
=

1

2
−

1

2s+1
.

B Pr[Zs = 1] for Squaring Operation in Z

Without loss of generality we shall assume that s is even, since if s is even Pr[Ws = s] =
Pr[Ws−1 = s− 1]. Hence,

Pr[Ys = 2 y |Ws = 2w] =
(w
y

) 1

2w

Again, we define Ds−2 as the carry produced from the (s − 2)-th column and let κ =∑b(s−2)/2c
i=0 Pr[Ds−2 = 2 i]. We note that the result of the sum of a given column will be

even, and the result will impact the next column, then

Pr[Zs = 1] = κ

b(s−1)/2c∑
j=0

b(s−1)/2c∑
k=2 j+1

Pr[Ys = 2 j + 1 |Ws = k] Pr[Ws = k]

+ (1− κ)

b(s−1)/2c∑
j=0

b(s−1)/2c∑
k=2 j

Pr[Ys = 2 j |Ws = k] Pr[Ws = k]

= κ

b(s−1)/2c∑
j=0

b(s−1)/2c∑
k=2 j+1

( k

2 j + 1

) 1

2k

(bs/2c
k

) 1

2bs/2c

+ (1− κ)

b(s−1)/2c∑
j=0

b(s−1)/2c∑
k=2 j

( k
2 j

) 1

2k

(bs/2c
k

) 1

2bs/2c

= (κ+ (1− κ))

b(s−1)/2c∑
j=0

b(s−1)/2c∑
k=2 j+1

( k

2 j + 1

) 1

2k

(bs/2c
k

) 1

2bs/2c
(by Lemma 2)

=

bs/2c∑
j=0

bs/2c∑
k=2 j+1

( k

2 j + 1

) 1

2k

(bs/2c
k

) 1

2bs/2c

=

b(s−1)/2c∑
k=1

1

2

(b(s− 1)/2c
k

) 1

2b(s−1)/2c

=
1

2
−

1

2

(b(s− 1)/2c
0

) 1

2b(s−1)/2c =
1

2
−

1

2b(s−1)/2c+1
.

C The Discrete Logarithm Problem

We recall the discrete logarithm problem:

Definition 1 Let α ∈ G, for some Abelian group G, and suppose α ∈ 〈β〉. The discrete
logarithm logα β is the unique integer x such that 0 ≤ x ≤ ord(α) − 1 and αx = β. The
Discrete Logarithm Problem (DLP) is to compute logα β, given α and β.
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In a side-channel analysis of a given instance of an exponentiation algorithm the results can
only give the best guess of the exponent. Stinson describes a variant of the Baby-Step/Giant-
Step algorithm where it is assumed that the exponent has a small Hamming weight [27].
Stinson’s algorithm requires the existence of a means of splitting a string of bits into two
sets of equal Hamming weight.

Lemma 3 We consider an integer of bit length m, as a string of bits of length m ∈ 2Z
and Hamming weight 0 < t < m. There will exist a set of contiguous bits with Hamming
weight bt/2c.

We present a somewhat simplified version of Stinson’s proof:

Proof We begin with the case where t is even. Let X be an string of bits of length m with
Hamming weight t ∈ 2Z. Let each Yi for i ∈ {1, . . . ,m/2} represent one of the m/2 sets
of contiguous bits starting from the i-th bit of the string. Let H be a function that returns
the Hamming weight, then H(Y1) = t −H(Ym/2). Given that H(Yi) −H(Yi+1) will be in
{−1, 0, 1} there will be some set of contiguous bits with Hamming weight m/2. If t is odd
then the first bit can be ignored as it will be set to one given the bit length is known putting
us the case described above. Hence, one can find one set of Hamming weight bm/2c and the
other of dm/2e. ut

This is sufficient for our requirements. We refer the reader to Stinson for versions of this
proof where m is odd [27].

Given an estimate for the exponent x′ where x = x′⊕e, for some unknown e of Hamming
weight t, we can attempt to determine x by guessing e. We let zi denote the ith bit of z for
an n-bit number z. Given an n-bit number z we define the vector z̊ as follows

z̊i =

 0 If zi = 0 ,
1 If zi = 1 and x′i = 0 ,
−1 If zi = 1 and x′i = 1 .

For a vector z̊ we define

gz̊ =

n∏
i=1

gz̊i·2
n−i

.

If we set β′ = αx
′
, then given a proposed value of e, such that x = x′ ⊕ e, we can test

whether it is correct by checking whether we have β = β′ · αe̊ . The error e can be divided
into two sets e1 and e2, where e1 and e2 have a Hamming weight of t/2 given by a splitting
algorithm. We also define a and b as two integers such that x′ = a + b and the only bits
that can be set to one for a and b are at the indexes defined by the splitting algorithm for
e1 and e2 respectively. Then αx = (αa αe̊1 )(αb αe̊2 ).

We produce a list of error vectors of Hamming weight t/2 where we define the i-th
error from the set of possible errors e1 as ei,1. We define the Giant-Steps to be the table

which consists of all pairs
(

β

αa α
e̊i,1

, a+ e̊i,1

)
, for all ei,1. We define the Baby-Steps as pairs(

αb αe̊j,2 , b+ e̊j,2
)

, for all ej,2. As in the Baby-Step/Giant-Step method we can terminate

the method when a collision is found between
(

β

αa α
e̊i,1

)
and

(
αb αe̊j,2

)
for a given i, j. We

can then derive the exponent as x = (a+ e̊i,1) + (b+ e̊j,2).
For an m-bit exponent one would be required to compute

(m
t/2

)
Giant-Steps and

(m
t/2

)
Baby-Steps for an error of Hamming weight t. The above assumes that t is even. If t is
odd then the extra bit can be assigned, arbitrarily, to the computation of baby steps. The
required computation then becomes

( m
bt/2c

)
Giant-Steps and

( m
bt/2c+1

)
Baby-Steps for an

error of Hamming weight t.
Other than the inclusion of an initial guess this algorithm is defined by Stinson [27],

and has time complexity of O
(
m
(m/2
t/2

))
. However, this assumes that t is known.

Typically, t is not known and an adversary has to start with t = 1 and increase the
Hamming weight until t is found. One would expect the resulting time complexity to be

O
(
m
∑t
n=0

(m/2
n/2

))
. However, by Lemma 3 we can ignore the cases where n is odd. Since
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the required baby and giant steps will be computed for the cases n − 1 and n + 1. The

resulting time complexity is therefore O
(
m
∑dt/2e
n=0

(m/2
n

))
when t is unknown.

To derive a private exponent used in RSA [25] the order is not known and the above
analysis cannot be applied directly. If we define γ to be the maximum possible bit length of
ord(α). Then the problem can be rewritten as αγ+1 αx = αγ+1 β. Then the inverse of αb

can be replaced by αγ+1−b [28].


